
AMORTIGUADORES HIDRÁULICOS, ABSORBEDORES DE ENERGÍA (E-BARS), RESTRICCIONES MECÁNICAS, ABRAZADERAS DINÁMICAS

GRUPO DE PRODUCTOS

AMORTIGUADORES HIDRÁULICOS, ABSORBEDORES DE ENERGÍA (E-BARS), RESTRICCIONES MECÁNICAS, ABRAZADERAS DINÁMICAS

CONTENIDO	PÁGINA
Campo de aplicación	3.1
Productos principales	3.2
Recomendaciones de uso	3.3
Amortiguadores hidráulicos, tipo 30, tipo 31	3.4
Alargaderas, tipo 33	3.7
Orejeta dinámica para soldar, tipo 35	3.8
Funcionamiento en operación, tipo 30, tipo 31	3.9
Factores de tensión admisible, tipo 30, tipo 31	3.10
Modo de operación , tipo 30, tipo 31	3.11
Amortiguadores hidráulicos, características de diseño	3.13
Amortiguadores hidráulicos, pruebas de funcionamiento	3.14
Instrucciones de montaje, tipo 30, tipo 31	3.15
Recomendaciones de mantenimiento tipo 30, tipo 31	3.17
Abrazaderas dinámicas, tipo 36, tipo 37	3.19
Perspectiva general de las abrazaderas dinámicas D 33,7 – D 914,4	3.21
Abrazaderas dinámicas, instrucciones de montaje	3.31
Absorbedores de energía (E-Bar), tipo 32	3.33
Restricciones mecánicas, tipo 39	3.37
Abrazaderas antilátigo	3.41

PRODUCTO 3

GRUPO DE PRODUCTOS 3 CAMPO DE APLICACIÓN

Para evitar tensiones y momentos no admisibles en el sistema de tuberías, deben eliminarse los desplaza-mientos no deseados en las tuberías u otros componentes de una planta. Sin embargo, de ninguna manera debe obstaculizarse el desplazamiento térmico.

Efectos dinámicos

Los productos del grupo 3 tienen por objeto proteger la tubería o sus elementos de cualquier daño producido por efectos dinámicos no esperados.

Los movimientos violentos no deseados de los componentes del sistema pueden estar causados por:

A. Influencias internas, como:

- → Disparos de las válvulas de seguridad.
- → Golpes de ariete
- → Efectos de la caldera
- → Rotura de la tubería

B. Influencias externas, como:

- → Efectos eólicos
- → Movimientos sísmicos
- → Impacto de aviones
- **→** Explosiones

Los componentes afectados pueden ser:

- → Tubería
- → Bombas
- → Válvulas y sus componentes
- → Recipientes a presión
- → Generadores de Vapor

TRU, 20, 4000 TRU1, 20, 4000 + 8017E+03 dsN/am Ristory en Toner Jume à 4000 del durie 301 del +5 2400 -43 1600 -2 2400 -3 3200 -4 -5

Componentes del grupo de productos 3

Para absorber y transmitir cargas producidas por efectos dinámicos son necesarios soportes especialmente diseñados para ese propósito. Con el Grupo de productos 3, LISEGA proporciona un sistema completo en el cual se cubren todos los campos de aplicación con su correspondiente componente ideal. Esto permite al usuario la optimización en el empleo de los componentes instalados.

El Grupo de Productos 3 de LISEGA comprende los siguientes productos principales:

- → Amortiguadores hidráulicos, tipos 30 y 31
- → Absorbedores de energía (E-Bars), tipo 32
- → Restricciones mecánicas, tipo 39

Para dichos componentes principales LISEGA dispone de una completa gama de componentes de conexión, que garantizan su montaje óptimo:

- → Alargaderas, tipo 33
- → Orejetas dinámicas para soldar, tipo 35
- → Abrazaderas dinámicas, tipo 36 y 37

De acuerdo con el sistema modular LISEGA, las conexiones están diseñadas para que sean compatibles y responden a criterios de cálculo uniformes. En la página 0.5 de las **Especificaciones Técnicas** puede observarse una **Tabla de cargas admisibles**, aplicable a todos los componentes estándar LISEGA.

Los procedimientos de Cálculos fundamentales cumplen con las normas y códigos internacionales y están certificados mediante las correspondientes pruebas de cualificación. Nuestros clientes pueden solicitar **Informes de Diseño** de acuerdo con **ASME III NF.**

GRUPO DE PRODUCTOS 3 PRODUCTOS PRINCIPALES

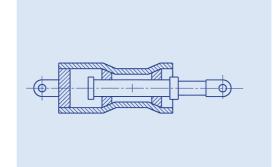
3

Amortiguadores hidráulicos, tipo 30, 31

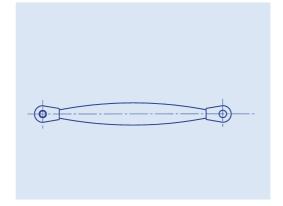
En sistemas de tubería en operación térmica es preferible el uso de **amortiguadores hidráulicos.** En un efecto dinámico, el amortiguador forma instantáneamente una restricción rígida entre el componente protegido y la estructura. Como resultado, la energía dinámica puede ser absorbida y transferida al mismo tiempo, sin causar perjuicios.

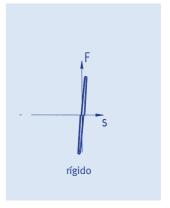

Debido a la función especial de los amortiguadores hidráulicos, éstos no impiden los desplazamientos térmicos producidos durante la operación normal del sistema.

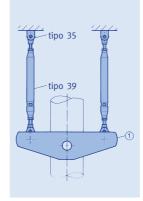

Absorbedores de energía, tipo 32

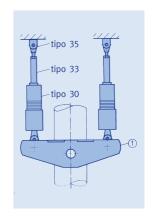

Los absorbedores de energía pueden emplearse cuando en el punto de efecto de las cargas el desplazamiento esperado en operación es muy pequeño. Estos elementos permiten pequeños movimientos, limitados por un gap ajustable en las posiciones finales. Los componentes están protegidos de sobrecargas porque, debido al diseño de estos elementos, la energía dinámica se transforma en energía de deformación.

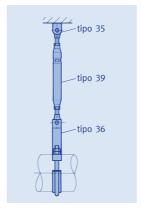

Restricciones mecánicas, tipo 39

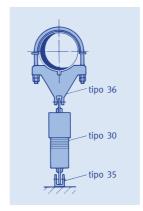

Las **restricciones mecánicas** se emplean cuando no se esperan movimientos en operación, por ejemplo en las llamadas posiciones-cero. Éstas forman restricciones rígidas desde un punto de conexión a otro y no permiten desplazamientos axiales. Sin embargo, sus extremos angulantes permiten movimientos angulares limitados.

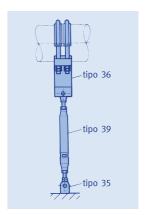


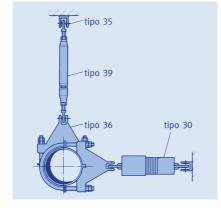


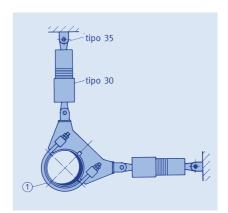

GRUPO DE PRODUCTOS 3 RECOMENDACIONES DE USO

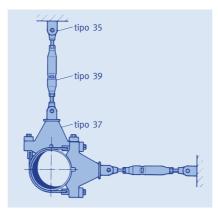

Los productos del grupo 3 están sometidos a esfuerzos dinámicos. En su uso, se deben observar los siguientes puntos para un funcionamiento efectivo:

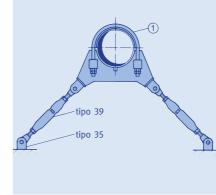

- 1. En lo referente al diseño de **puntos de anclaje dinámicos**, debe considerarse la rigidez del **sistema de soporte como un conjunto**, es decir la de todos los componentes de una cadena de carga.
- 2. En la selección del tamaño de los componentes, debe considerarse **el total de cargas** que actúa sobre el sistema.
- 3. Debe especificarse claramente a qué nivel de carga de diseño (H, HZ, HS, y/o Nivel A,B,C,D) corresponden las cargas especificadas. Para ello debe observarse la Tabla de cargas admisibles en la página 0.5 de las Especificaciones Técnicas.
- 4. El desplazamiento total del amortiguador no debe ser empleado al límite. Se debe mantener un **margen de seguridad** de 10mm. En cada extremo del amortiguador.
- 5. Durante la instalación de los componentes, se debe permitir cierto **margen de movimiento lateral**, con el fin de evitar que las orejetas de conexión se bloqueen.
- 6. Cuando los amortiguadores hidráulicos son **instalados en paralelo,** es recomendable considerar las reservas de cargas. En lugar del 50%, en cada caso se considera que ambos amortiguadores sean diseñados para soportar un 70% de la carga total calculada.
- 7. Los planos de montaje deben indicar claramente qué libertad angular requieren los componentes.
- 8. Para las conexiones roscadas de los anclajes estructurales debe indicarse el par de rosca necesario.
- 9. Antes de la puesta en marcha de la planta, todos los puntos de soporte deben ser nuevamente **inspeccionados visualmente.**
- 10. Se deben consultar las instrucciones de LISEGA para la puesta en marcha e inspección, así como las recomendaciones para su mantenimiento.
- ① Construcción con abrazadera dinámica especial











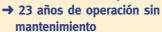
AMORTIGUADORES HIDRÁULICOS TIPO 30, 31

Los amortiguadores hidráulicos LISEGA han superado la prueba de durabilidad en operación durante más de 3 décadas, demostrando así su extraordinaria fiabilidad. Su larga experiencia en operación y su constante desarrollo tecnológico, dan como resultado un producto universalmente respetado y líder mundial.

El acceso a los amortiguadores hidráulicos una vez instalados suele ser difícil e implica la adopción de rigurosas medidas de seguridad, debido al peligro de radiación en instalaciones de plantas nucleares. Por lo tanto, en este tipo de productos es de vital importancia que su operación sea continua, fiable y sin mantenimiento.

Para garantizar un funcionamiento duradero y fiable de los amortiguadores hidráulicos, además de su diseño y su principio funcional, es de vital importancia la calidad de los siguientes componentes críticos:

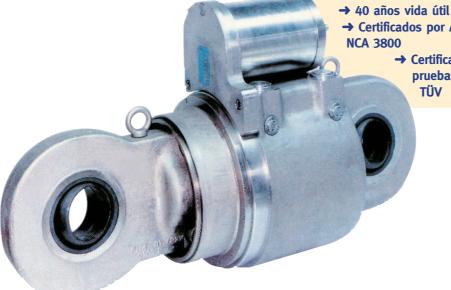
- → Sistemas de sellado
- → Pistones v barras guía
- → Fluido hidráulico
- → Superficies deslizantes
- → Interiores resistentes a la corrosión
- → Sistema de la válvula de control


El desgaste y la rotura prematura, así como la corrosión, son las causas más frecuentes de fallo en los amortiguadores hidráulicos. Por esta razón, los amortiguadores hidráulicos LISEGA se

fabrican con materiales anticorrosivos y se evita cualquier forma de contacto de metal con metal, por medio del uso de bandas guía especiales.

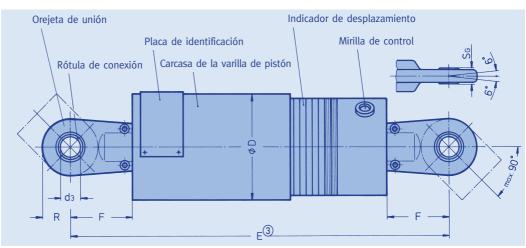
En LISEGA, el sistema de sellado, guías y fluido hidráulico se certifican mediante procedimientos de cualificación fiables, a fin de garantizar por lo menos 23 años de operación sin problemas en plantas nucleares, en condiciones de operación normales.

Las siguientes cualidades han convertido a los amortiguadores hidráulicos LISEGA en productos de calidad superior reconocida mundialmente:


- → Materiales anticorrosivos
- → Sistemas de sellado especial
- → Sistemas guía antivibración.
- → Sistemas hidráulicos presurizados
- → Función dinámica
- → Válvulas de control reemplazables (tipo 31)

→ Certificados por ASME -

→ Certificados mediante pruebas de calificación TÜV



AMORTIGUADORES HIDRÁULICOS TIPO 30

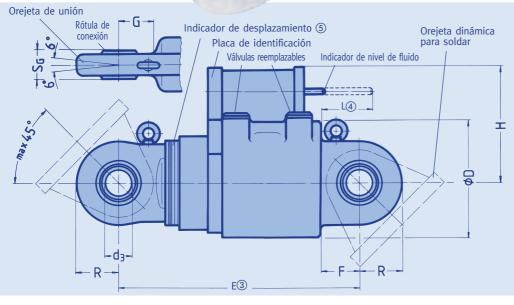
Tipo 30 18 16 a 30 93 13 Fabricados en serie Diseño estándar

Disponible en stock. Sólo se utilizan materiales anticorrosivos. Las orejetas de conexión (material = P250GH, C45E+QT), montadas mediante conexiones roscadas, son galvanizadas.

Tipo	Carga nominal (kN) 1	Emergencia Nivel C 2	Desplaza- miento (5)	ØD	Ø d3	E③ min	E③ max	F4	R	SG	Peso (kg)
30 18 16	3	4.0	100	54	10	220	320	18	15	9	1.9
30 38 16	8	10.6	100	70	12	315	415	50	20	10	4.3
30 39 16	8	10.6	200	70	12	410	610	50	20	10	5.7
30 42 16	18	23.9	150	85	15	395	545	58	22.5	12	8.3
30 43 16	18	23.9	300	85	15	545	845	58	22.5	12	12.0
30 52 13	46	61.0	150	135	20	445	595	65	30	16	20.0
30 53 13	46	61.0	300	135	20	595	895	65	30	16	29.0
30 62 16	100	141	150	170	30	535	685	100	45	22	37.0
30 63 16	100	141	300	170	30	685	985	100	45	22	51.0
30 72 16	200	267	150	200	50	615	765	130	60	35	61.0
30 73 16	200	267	300	200	50	765	1065	130	60	35	78.0
30 82 16	350	472	150	270	60	730	880	165	75	44	122.0
30 83 16	350	472	300	270	60	880	1180	165	75	44	147.0
30 92 13	550	735	150	300	70	760	910	165	105	49	175.0
30 93 13	550	735	300	300	70	910	1210	165	105	49	207.0
30 02 12	1000	1335	150	390	100	935	1085	240	145	70	390.0
30 03 12	1000	1335	300	390	100	1085	1385	240	145	70	460.0

Datos a indicar en el

Amortiguador hidráulico tipo 30 Con dos orejetas dinámicas tipo 35 Identificación


- 1 Ver Especificaciones Técnicas, Tabla "Cargas Admisibles" en la Pág. 0.5 y "Soldadura de las orejetas dinámicas" en la Pág. 3.16.
- 2 Carga de diseño para terremotos y efectos de cargas similares. Ver Especificaciones Técnicas, Pág. 0.5.
- 3 Emin = pistón retraído Emax = pistón extendido

Para mayores longitudes de instalación, pueden emplearse las alargaderas tipo 33 (Pág. 3.7)

- 4 Al reemplazar otros productos por componentes LISEGA, pueden modificarse las dimensiones de las conexiones, tales como los diámetros de los bulones y las longitudes de las orejetas, a fin de adaptar nuestros productos a los anclajes existentes.
- 5 Pueden suministrarse componentes con desplazamientos mayores bajo pedido.

pedido:

Tipo C	arga nomina (kN) ①	l Emergencia Nivel C ②	Despl.	ØD	Ø d3	E③ min	E3 max	F	G	Н	max.4	R	SG	Peso (kg)
31 98 16	550	735	100	240	70	620	720	95	90	310	115	105	49	152
31 99 16	550	735	200	240	70	735	935	95	90	310	145	105	49	181
31 08 16	1000	1335	100	330	100	765	865	120	110	385	145	140	70	285
31 09 16	1000	1335	200	330	100	880	1080	120	110	385	200	140	70	338
31 28 16	2000	2660	100	440	120	870	970	160	155	450	150	160	85	648
31 38 16	3000	4000	100	540	140	1020	1120	190	180	620	100	200	90	968
31 48 16	4000	5320	100	580	160	1050	1150	205	200	585	255	245	105	1300
31 58 16	5000	6650	100	630	180	1140	1240	230	220	670	205	290	105	1750

- ① Ver Especificaciones Técnicas, Tabla "Cargas Admisibles" en la Pág. 0.5 y "Soldadura de las orejetas dinámicas" en la Pág. 3.16.
- ② Carga de diseño para terremotos y efectos de cargas similares. Ver Especificaciones Técnicas, Pág. 0.5.
- 3 Emin = pistón retraído Emax = pistón extendido
- 4 L max a 80°C
- ⑤ Diseño del indicador de recorrido para rango de desplazamiento 8 (100mm desplazamiento)

Amortiguadores hidráulicos Tipo 31 98 16 a 31 58 16

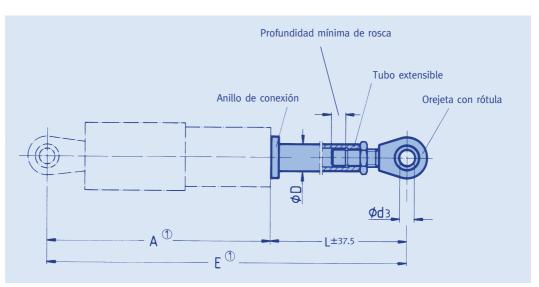
Los amortiguadores hidráulicos tipo 31 están especialmente diseñados para grandes cargas. Principalmente se utilizan en plantas nucleares para proteger generadores de vapor y bombas de gran tamaño. Debido al limitado espacio en estas áreas, sus dimensiones están diseñadas para satisfacer las condiciones especificadas. La siguiente tabla sirve como una orientación general durante el diseño inicial. La carcasa y las orejetas de conexión están fabricadas en acero inoxidable.

Datos a indicar en el pedido:

Amortiguador hidráulico tipo 31.. Con dos orejetas dinámicas tipo 35... Identificación

Los amortiguadores hidráulicos LISEGA tipo 31 están provistos de válvulas reemplazables, permitiendo así su inspección en campo.

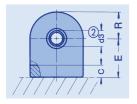
ALARGADERAS TIPO 33

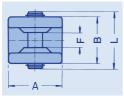

Alargaderas para instalación Tipo 33 18 18 a 33 93 13

Las alargaderas tipo 33 se usan para cubrir mayores longitudes de instalación, con el fin de evitar ajustes estructurales en campo.

La conexión con el amortiguador hidráulico o el absorbedor de energía se realiza en la base del cilindro. Sus conexiones roscadas estándar permiten la sustitución simple de las alargaderas por orejetas de conexión estándar. Esto es igualmente aplicable para conexiones especiales, de gran utilidad cuando se reemplazan unidades de otros fabricantes, ya que, de este modo, pueden emplearse las conexiones estructurales existentes (ver página 3.8).

Material: P355T1 / S355J2G3


	Carga	Despl.							1	Pe:	so (kg)
Tipo	nominal (KN)	del amor- ti-guador	A(1)	d3	D max	E①② min	E①② max	±37.5② min	±37.5② max	L min	+ por cada 100mm
33 18 18	3	100	240	10	25	445	760	205	520	0.45	0.39
33 38 18	8	100	315	12	30	510	760	195	445	0.60	0.55
33 39 18	8	200	460	12	30	655	690	195	230	0.60	0.55
33 42 18	18	150	412	15	35	617	1175	205	763	0.90	0.75
33 43 18	18	300	635	15	35	840	1030	205	395	0.90	0.75
33 52 13	46	150	455	20	48	675	1405	220	950	1.50	0.72
33 53 13	46	300	680	20	48	900	1280	220	600	1.50	0.72
33 62 18	100	150	510	30	64	780	1950	270	1440	2.30	1.90
33 63 18	100	300	735	30	64	1005	1850	270	1115	2.30	1.90
33 72 18	200	150	560	50	83	875	2415	315	1855	5.00	3.60
33 73 18	200	300	785	50	83	1100	2140	315	1355	5.00	3.60
33 82 18	350	150	640	60	90	1030	1710	390	1070	10.00	3.40
33 62 16	<i>J J J J</i>	150	040	00	100	1711	2400	1071	1760	45.00	4.70
33 83 18	350	300	865	60	90	1255	1750	390	885	10.00	3.40
	<i>330</i>	500	003	00	100	1751	2320	886	1455	36.00	4.70
33 92 13	550	150	670	70	115	1110	2870	440	2200	33.00	5.50
33 93 13	550	300	895	70	115	1335	2795	440	1900	33.00	5.50
33 02 12	1000	150	770	100	160	1325	2650	555	1880	90.00	9.50
33 03 12	1000	300	995	100	160	1550	2550	555	1555	90.00	9.50


1 Pistón en la posición media

Datos a indicar en el pedido:

Alargadera tipo 33 L = ... mm para amortiguador hidráulico. ② Son posibles dimensiones de instalación mayores que E max con la correspondiente reducción de carga. Pueden suministrarse dimensiones L mas pequeñas, pero sin posibilidad de ajuste.

OREJETAS DINÁMICAS PARA SOLDAR, TIPO 35

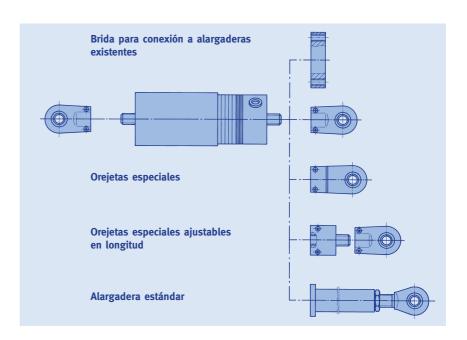
Este componente se emplea como conexión en los amortiguadores hidráulicos tipo 30 y 31, absorbedores de energía tipo 32 y restricciones mecánicas tipo 39 (también para los tipos 16, 20, 27), y constituye el ataque a viga.

Las orejetas dinámicas están fabricadas en acero carbono S355J2G3 fácilmente soldable, y están provistas de bulones de conexión de gran precisión en acero inoxidable.

Las orejetas dinámicas tipo 35 pueden ser suministradas, bajo pedido, provistas de placas base para atornillar a la estructura.

① Ver Especificaciones Técnicas, Tabla "Cargas Admisibles" en la Pág. 0.5 y "Soldadura de las orejetas dinámicas" en la Pág. 3.16.

② Conexión: taladro H7, bulón f8.


Tipo	Carga nominal (kN) (1)	Α	В	С	Ø d3②	Е	F	L	R	Peso (kg)
35 19 13	3	25	32	12	10	30	9.5	42	13	0.2
35 29 13	4	25	32	12	10	30	9.5	42	13	0.2
35 39 13	8	30	37	12	12	34	10.5	46	15	0.3
35 49 13	18	35	43	13	15	40	12.5	52	18	0.5
35 59 19	46	54	54	15	20	50	16.5	65	27	1.0
35 69 19	100	90	79	23	30	75	22.5	95	45	3.7
35 79 19	200	110	100	25	50	90	35.5	115	55	7.9
35 89 19	350	150	130	34	60	115	45	160	75	17.0
35 99 11	550	180	230	40	70	155	50	220	80	41.0
35 09 13	1000	390	310	58	100	212	72	305	100	132.0
35 20 19	2000	520	320	65	120	245	87	320	135	215.0

Datos a indicar en el pedido: Orejeta dinámica para soldar, tipo 35

CONEXIONES ESPECIALES

Es bien sabido que los amortiguadores hidráulicos de primera generación no cumplen con los requisitos técnicos y especificaciones actualmente vigentes. Como resultado se producen fallos de operación y altos costos de mantenimiento. Se puede obtener un considerable ahorro reemplazando estas unidades por amortiguadores o absorbedores de energía LISEGA.

Con el fin de mantener las conexiones existentes en campo, disponemos de una amplia oferta de conexiones especiales.

AMORTIGUADORES HIDRÁULICOS TIPO 30, 31 FUNCIONAMIENTO EN OPERACIÓN

Funcionamiento en operación

Bajo cargas dinámicas, los amortiguadores hidráulicos LISEGA, dependiendo del espectro de cargas en operación, ofrecen un funcionamiento constante, previsible y práctico

Valores de función específicos

De estándar, los amortiguadores hidráulicos LISEGA mantienen los valores indicados a comtinuación. Los valores están basados en cargas cíclicas o dinámicas. Los datos cumplen con las normas internacionales y los requisitos prácticos. El cumplimiento de las especificaciones está probado y registrado por pruebas de aceptación en la fábrica. Por medio de adaptaciones de diseño, puede cumplirse con parámetros especiales, si se requiere.

	Tipo	30	Tipo 31			
	Rango de desplazamiento 8,2,9 ①	Rango de desplazamiento 3 (300)	Rango de desplazamiento 8 (100)	Rango de desplazamiento 9 (200)		
Desplazamiento de la varilla de pistón Sb a Rt ② y 1-35 Hz	≤ 6mm	≤ 8mm	≤ 10mm	≤ 12mm		
Desplazamiento de la varilla de pistón Sa	≤ 0.5mm ④					
Velocidad de bloqueo a Rt ②		2-6 1	mm/s			
Velocidad de bypass a FN y Rt ②		0.2-2	mm/s			
Resistencia a la fricción ③	$0.01 F_N \text{ o} \le 200 N$ $0.015 F_N \text{ o} \le 300 N$ $\le 0.01 F_N$					
	a F _N ≤ 20kN	a Fn 20kN				

- ① Rango de desplazamiento $8 \le 100$ mm. Rango de desplazamiento $2 \le 150$ mm. Rango de desplazamiento $9 \le 200$ mm.
- ② Rt = Temperatura ambiente. A una temperatura ambiente de 150°C (corta duración, máx. 1h) el desplazamiento del pistón podría verse incrementado en un 50%, debido a la reducción de la viscosidad del fluido.
- 3 Medido a una velocidad constante del pistón de aprox. 0.3 mm/s. La fuerza de ruptura se mantiene a menos de 1.5 de los valores indicados.
- 4 Si se requiere, Sa puede incrementarse hasta \geq 0.5 mm ajustándose a otros datos de funcionamiento (KTA 3205.3).

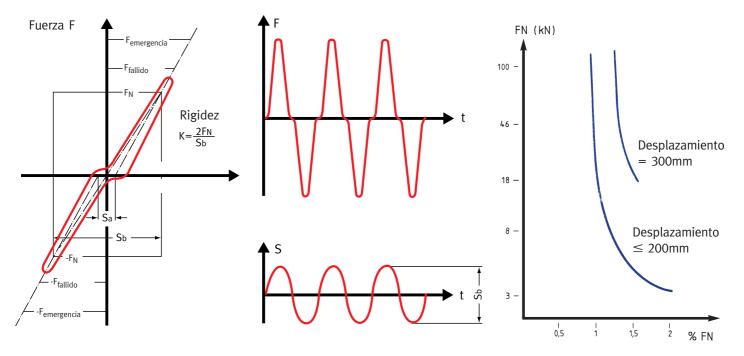


Diagrama de fuerza-desplazamiento

Amplitudes de fuerza y desplazamiento

Funcionamiento real en relación a la carga normal y el rango de desplazamiento.

AMORTIGUADORES HIDRÁULICOS TIPO 30, 31 FACTORES DE TENSION ADMISIBLE

3

Factores de tensión en funcionamiento Los amortiguadores hidráulicos LISEGA están diseñados, de estándar, para las cargas de operación indicadas a continuación. Los valores especificados han sido confirmados por las pruebas de cualificación de la TÜV Alemana. Mediante adaptaciones especiales pueden obtenerse otros valores.

Carga debida a la temperatura	Permanente	Max. 80°C
del ambiente	Corto plazo max. 1h/ciclo de Temp. Max. 40h por año	Max. 150°C
Humedad relativa	a 10-150°C	100%
Atmósfera de vapor húmedo	Max. 150°C	X=1
Cantidad de energía	Acumulada	10 ⁵ J/kg (10 ⁷ rad)
Presión ambiente	Continua	0.5-1 bar
Tresion ambiente	Corto plazo	5 bar exceso de presión

Los valores indicados se refieren a amortiguadores hidráulicos, incluyendo

sistemas de sellado y fluido. Los valores especiales solamente para el fluido son:

Fluido hidráulico (aceite de silicona)	Punto de salida	-50℃
	Punto álgido	> 300°C
	Punto de ignición	≈ 500°C

Resistencia a la fatiga

La prueba de la durabilidad en operación esta basada en el siguiente espectro de carga acumulada:

Carga nominal FN Ciclos de carga
10 %
50 %100,000
80 %
100 % (H/Nivel A/B)10,000
133 % (HZ/Nivel C)100
172 % (HS/Nivel D)10

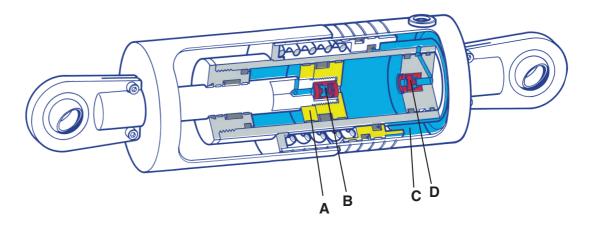
El número de ciclos corresponde a la tensión dinámica máxima estimada para diversos casos de cargas durante un periodo de 40 años. También cumple con los requisitos del programa de pruebas de cualificación de la TÜV Alemana. Los resultados obtenidos prue-

ban que los amortiguadores resisten estas cargas a la vez que mantienen su integridad funcional.

El sistema especial de guías de los amortiguadores hidráulicos aporta una gran resistencia a cargas cíclicas permanentes en operación. Esto esta ratificado por experiencias practicas.

Se debe considerar que el rango de posibles parámetros influyentes, tales como frecuencias, amplitudes, oscilaciones, direcciones de impacto, efectos mono- y multiaxiales, así como posibles solapamientos, no permiten una definición uniforme de la vibración constante en operación.

Los equipos de prueba controlados por ordenador optimizan el proceso de pruebas


Área de pruebas de los amortiguadores en la fábrica de Zeven, Alemania

Pruebas de amortiguadores, tipo 31. Carga de prueba 4500 kN

AMORTIGUADORES HIDRÁULICOS MODO DE OPERACIÓN

Esquema de funcionamiento de un amortiguador hidráulico, tipo 30

MODO DE FUNCIONAMIENTO

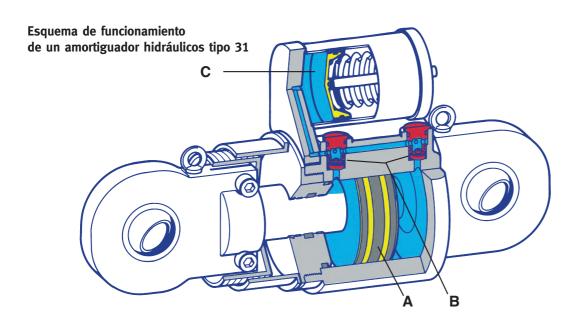
Caso dinámico

En el caso de un impacto repentino, se produce una conexión instantánea, segura y casi rígida entre el elemento soportado y el punto fijo a la estructura. Las cargas dinámicas resultantes son inmediatamente dirigidas a la conexión con la estructura y se disipan sin consecuencias perjudiciales.

Sin embargo, los Movimientos normales de la operación de la tubería u otros componentes no son dificultados por el empleo de estos componentes.

Los momentos de fuerzas pueden cambiar de dirección aleatoriamente dentro del complejo espectro de oscilaciones. El rango de frecuencia de respuesta en los amortiguadores LISEGA es de 0.5-100 Hz.

FUNCIONAMIENTO


Válvulas de control

El funcionamiento de los amortiguadores hidráulicos LISEGA tipo 30 está controlado por la válvula de control principal (B), montada axialmente dentro del pistón

hidráulico (A). Durante movimientos del pistón dentro de los rangos admisibles (por ejemplo ≤ 2mm/s) la válvula permanece abierta por medio de la presión elástica del muelle, y el fluido hidráulico se fluye libremente de un lado a otro del pistón. Durante desplazamientos rápidos del pistón por encima de la velocidad límite (por ejemplo aprox. ≥ 2 mm/s), la presión del caudal del flujo resultante en el asiento de la válvula cierra la válvula principal. El flujo del fluido se para y el movimiento se bloquea. La compresibilidad del fluido produce un efecto de amortiguación sobre la restricción del pistón. Esto evita fuerzas por enclavamiento perjudiciales para el sistema.

Para el movimiento en la dirección de compresión, la válvula de compensación (D) se cierra casi al mismo tiempo que la válvula principal.

Si la presión en la válvula cerrada disminuye, por ejemplo por una inversión de la dirección del movimiento, la válvula de control se abre automáticamente cuando la fuerza del fluido es menor que la fuerza elástica del muelle.

Bypass

Para prevenir el bloqueo de las válvulas, éstas están equipadas con un sistema de bypass.

Esto permite el movimiento limitado del pistón y garantiza la apertura de las válvulas mediante la rápida ecualización de la presión en ambas cámaras del cilindro. La válvula de compensación trabaja al mismo tiempo que la válvula principal en el mismo sentido.

Depósito

Tanto para las posiciones variables del pistón como para los cambios en el volumen del fluido producidos por cambios de temperatura, la compensación del volumen ocurre a través de un depósito montado coaxialmente (C). El conducto entre el depósito y el cilindro principal está regulado por la válvula de reguladora (D).

Amortiguadores de gran calibre tipo 31

El funcionamiento de los amortiguadores LISEGA tipo 31 es fundamentalmente el mismo que el del tipo 30.

Sin embargo, sus especiales dimensiones requieren un diseño diferente del depósito (C). El sistema de la válvula también es diferente.

Las válvulas (B) operan de modo similar a las del tipo 30. La circulación del fluido también se bloquea mediante el cierre de la válvula correspondiente en la respectiva dirección del fluido. Esto sucede cuando la velocidad límite del fluido es sobrepasada. Al estar las válvulas conectadas directamente al depósito no es necesaria ninguna válvula de compensación.

Pruebas periódicas

Para facilitar el mantenimiento, el sistema de la válvula de control esta diseñado para poder sustituirla con el amortiguador instalado. Por lo tanto, las válvulas pueden ser sustituidas por un conjunto de válvulas previamente probadas en el caso de una prueba periódica. Para evitar la pérdida de aceite se utiliza un dispositivo de cierre especial. Las válvulas originales pueden ser probadas en un amortiguador de repuesto y prepararse nuevamente para su uso.

AMORTIGUADORES HIDRÁULICOS CARACTERÍSTICAS DE DISEÑO

Características de diseño

Los amortiguadores hidráulicos son sistemas cerrados sin ninguna conexión externa roscada. Todos los componentes internos están unidos entre sí sin soldaduras, por medio de uniones de precisión y conexiones roscadas y se ajustan mecánicamente (ver fig. 3).

Para protegerlos contra la corrosión, los amortiguadores hidráulicos LISEGA están fabricados en materiales anticorrosivos. Las conexiones son acero carbono galvanizado. Las guías de los pistones y los pistones están fabricados en un material no-metálico resistente al desgaste (ver fig. 2).

El depósito de fluido esta sellado de la atmósfera mediante pistón programable, de manera que una ligera sobrepresión en el sistema hidráulico mantiene las juntas en su posición.

Las válvulas de control son decisivas en la operación dinámica de los amortiguadores. Para conseguir una gran precisión en operación, los parámetros de las válvulas han sido optimizados por medio de numerosas pruebas y modelos de cálculo especiales.

Sellado

Los sistemas de sellado juegan un papel vital para garantizar una larga vida útil de un amortiguador hidráulico. Junto con el fluido hidráulico y las bandas guía, los precintos forman parte de los componentes no-metálicos del amortiguador y por ello son susceptibles de un envejecimiento y desgaste natural. El requisito mas importante para un efecto de sellado duradero es la selección de un correcto material de sellado. Por ello factores como la capacidad de mantener la forma original y la mínima relajación posible respecto a su tensión inicial, son factores fundamentales.

Para un aprovechamiento máximo de las características del material, también es importante la forma del sellado y el diseño de su localización. La combinación óptima de los siguientes factores es decisiva para la eficiencia funcional:

- → resistencia a la temperatura
- → resistencia a la radiación
- → resistencia a la abrasión, especialmente con vibraciones de alta frecuencia
- → mantenimiento duradero de su forma inicial
- → buenas cualidades de funcionamiento en condiciones secas
- → mínima tendencia de difusión en las superficies metálicas.
- → Mínimo efecto de desplazamientos no deseados.

El material que mejor cumple estos requisitos es un compuesto especial, cuyo compuesto base es el **elastómero de flúor VITON.** A fin de aprovechar al máximo sus especiales características, también deben tenerse en cuenta los siguientes criterios:

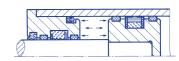
- → Formas de diseño especiales
- → Materiales adecuados de los compuestos adicionales
- → Óptima consistencia de la mezcla
- → Dureza perfectamente equilibrada
- → Precisión en superficies deslizantes
- → Ubicación perfectamente definida para los sellados

Los sellados comerciales no cumplen estos requisitos y, de acuerdo con nuestra experiencia, la falta de calidad supone un fallo prematuro del amortiguador. En cooperación con un fabricante de sellados, LISEGA desarrolló un sistema de sellado especifico en 1984 para sus amortiguadores hidráulicos. Desde entonces, estos sellados han demostrado su gran capacidad en aplicaciones prácticas.

Además de otros procedimientos de cualificación mediante envejecimiento artificial y pruebas de fatiga, en 1992 LISEGA introdujo, por orden de una importante compañía nuclear europea, un procedimiento de certificación especial para sus amortiguadores. Las pruebas

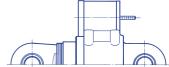
certifican un funcionamiento sin mantenimiento de al menos 23 años en plantas nucleares, en condiciones de operación normales.

Indicadores de control


La posición del pistón puede ser leída desde cualquier posición comprobando los anillos del cuerpo del cilindro. La envolvente de acero inoxidable conectada al pistón lo protege de cualquier daño, suciedad y calor, y también sirve de indicador.

El nivel del fluido del depósito se indica por la posición del pistón del depósito. Se puede utilizar una mirilla para comprobar el nivel mínimo en el tipo 30. El tipo 31 tiene una varilla indicadora acoplada a la base del depósito externo.

Para detalles de diseño y materiales, ver **Especificaciones Técnicas.**

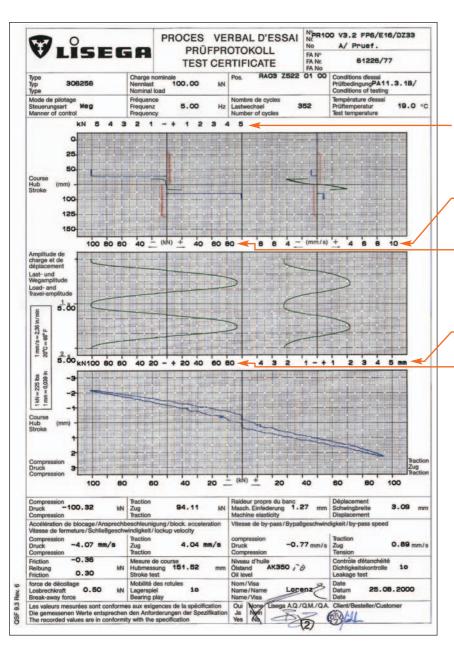


(Figura 1)

(Figura 2)

(Figura 3)

AMORTIGUADORES HIDRÁULICOS PRUEBAS DE FUNCIONAMIENTO


3

Los rigurosos requisitos dentro de la industria nuclear exigen pruebas sin fallos para los parámetros de funcionamiento de los amortiguadores hidráulicos. Esto se aplica tanto a la primera prueba de aceptación como a las sucesivas pruebas periódicas.

LISEGA aplica un procedimiento de pruebas usando la mas moderna tecnología. Los bancos de pruebas actúan como unidades de pulso hidrodinámico, con impulsos de fuerza controlada o de desplazamiento controlado. Las bandas de frecuencia oscilan desde 0.5Hz. hasta 30 Hz y las cargas de prueba desde 0.5kN hasta 5000kN. En total, LISEGA dispone de siete bancos de pruebas de varios tamaños en diferentes fábricas.

Estos son frecuentemente empleados como unidades móviles en planta, a petición del cliente. Muchos bancos de pruebas han sido suministrados a diferentes países para ser empleados por el personal de la planta en inspecciones periódicas.

Mediante diversos programas de pruebas nuestros bancos de prueba permiten realizar pruebas de todas las marcas de amortiguadores. Todos los bancos de pruebas de LISEGA son inspeccionados, certificados y calibrados regularmente por entidades autorizadas.

Resistencia a la friccion (kN)

Pruebas funcionales cuasi-estáticas

Velocidad de resistencia (mm/s)
-Velocidad de bloqueo (mm/s)
Velocidad de bypass (mm/s)

Carga después de activación de la válvula (kN) Carga a la velocidad de bypass (kN) ratio de soplado

Pruebas funcionales dinámicas (amplitudes de carga y desplazamiento)

Desplazamiento (mm) Cargas de compresión / tensión (kN)

Diagrama carga / desplazamiento

Certificado de aceptación con diagramas de pruebas

AMORTIGUADORES HIDRÁULICOS TIPO 30, 31 INSTRUCCIONES DE MONTAJE

Los amortiguadores hidráulicos son componentes de precisión y seguridad, por lo que su manipulación requiere un cuidado especial. Para el correcto funcionamiento de los amortiguadores hidráulicos es esencial observar las siguientes instrucciones.

Transporte y almacenamiento

Los amortiguadores y sus componentes asociados deben almacenarse en lugares cerrados y protegerse de la suciedad y de daños. El transporte, por lo tanto, debe llevarse a cabo con gran cuidado. LISEGA recomienda que los amortiguadores permanezcan en su embalaje original hasta la hora de montarlos. Cualquier daño producido durante el envío, carga, transporte o instalación debe ser informado al fabricante inmediatamente.

Condiciones de envío

Los amortiguadores hidráulicos se suministran como unidades completamente operacionales, provistos de fluido hidráulico, y preparados para entrar en operación. Las orejetas de conexión del tipo 30 están conectadas por un extremo con la base y por el otro con la varilla del pistón, y asegurada mediante tornillos de seguridad.

En el tipo 31 la orejeta del extremo inferior forma una unidad con la base del cilindro.

Los amortiguadores LISEGA están fabricados en materiales anticorrosivos, de modo que no requieren ningún tratamiento superficial adicional. Las conexiones roscadas son electro galvanizadas y cromatizadas en blanco.

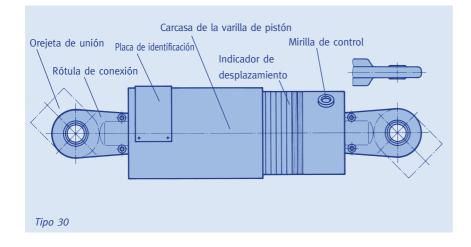
Las orejetas dinámicas para soldar, tipo 35, se suministran por separado, incluyendo los bulones. Su superficie tiene una protección de imprimación soldable.

Para el transporte, los amortiguadores tipo 30 se suministran embalados individualmente en

cajas específicas para ello con los pistones totalmente retraídos. El tipo 31 se coloca en pallets especiales.

Los amortiguadores de gran envergadura se suministran con las longitudes de instalación reales prefijadas.

Montaje


Los amortiguadores han de ser inspeccionados minuciosamente antes del montaje. También las orejetas de conexión deben ser revisadas, comprobando que están firmemente sujetas. Las conexiones a estructura existentes y orejetas dinámicas suministradas deben ser soldadas en obra. La disposición de las orejetas dinámicas debe ser tal que el desplazamiento angular máximo se dé en la dirección de la máxima expansión térmica en operación. El desplazamiento lateral esta limitado a un máximo de \pm 6°. Cualquier giro del ataque a viga debería ser evitado, debido a la limitación de movimiento que ello supondría.

La soldadura de las conexiones o en sus proximidades debe completarse antes de instalar los amortiguadores.

Para su montaje, los amortiguadores tipo 30 deben ser ajustados a la longitud de montaje requerida (la dimensión de bulón a bulón de conexión) extendiendo la varilla del pistón. Esto debe hacerse despacio, suavemente y por debajo de la velocidad de cerrado para evitar bloquear el amortiguador. Los tipos mas pequeños pueden ajustarse con la mano. El peso propio de los amortiguadores más grandes puede utilizarse para ajustarlos, colgando la unidad a la orejeta de la varilla del pistón.

Los amortiguadores pueden instalarse prácticamente en cualquier posición concebible. El pistón debería estar conectado al componente conductor del calor para disipar cualquier calor de la radiación mediante su envolvente protectora.

La posición de montaje de los amortiguadores debe seleccionarse de modo que se permita un fácil acceso a la mirilla de cristal para las inspecciones de fluido durante las inspecciones periódicas.

3

Las conexiones a los accesorios estructurales deben ajustarse adecuadamente, con el fin de permitir la actuación de las cargas. Todas las conexiones roscadas situada en el flujo de fuerzas deben apretarse con suficiente par de apriete.

Si, después de instalado, se realiza cualquier soldadura cerca del amortiguador, debe tenerse cuidado de que la corriente de soldadura no atraviese el cuerpo del amortiguador.

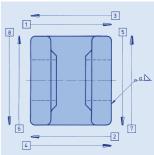
Después de instalar el sistema completo, se recomienda que cada unidad sea inspeccionada en los siguientes puntos:

- **A.** Correcta instalación de conexiones para actuación de cargas (roscas de seguridad de las orejetas, bulones seguros, conexiones roscadas)
- **B.** Todas los puntos de instalación deben ser inspeccionados de manera que permitan libertad de movimientos durante la expansión térmica. Debe permitirse el movimiento libre de las orejetas en los ataques a viga y también debe evitarse que el pistón alcance la posición final.

Para la posición del pistón, se recomienda una reserva de seguridad de 10mm en cada extremo del cilindro. La posición puede leerse en la escala de desplazamientos.

Antes de la puesta en marcha de la planta, se recomienda una completa inspección visual de todos los amortiguadores y situaciones de instalación.

Soldadura de las orejetas dinámicas


Para la soldadura de las orejetas dinámicas se recomienda el siguiente procedimiento: El cordón mínimo de soldadura "a" para las orejetas dinámicas tipo 35 depende del desplazamiento angular α y β . La base de este cálculo es una tensión máxima admisible de 90 N/mm2 en el nivel de carga A.

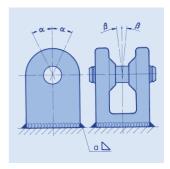
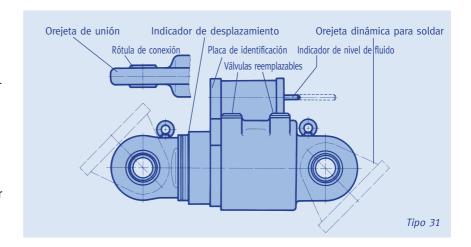

Si el desplazamiento angular α aumenta a 90°C, las cargas admisibles se reducen en aproximadamente un 15%, siendo el espesor del cordón de soldadura constante (a min. A α = 45°). Para cargas admisibles, ver

tabla de cargas en Especificaciones Técnicas, página 0.5.


Procedimiento de soldadura

- Soltar los bulones de las orejetas dinámicas
- 2. Precalentar las orejetas de los tipos 357919 y mayores a aprox. 100°C
- 3. Emplear electrodos base
- **4.** La soldadura debe llevarse a cabo por capas, a fin de evitar distorsiones en la soldadura (para la secuencia ver diagrama)
- **5.** Dejar enfriar la orejeta dinámica a 100°C después de cada capa de soldadura.

Tipo	$\alpha=15^{\circ}$ $\beta=6^{\circ}$	$\alpha = 30^{\circ}$ $\beta = 6^{\circ}$	α =45° β = 6°
35 19 13	3.0	3.0	3.0
35 29 13	3.0	3.0	3.0
35 39 13	3.0	3.0	3.0
35 49 13	3.0	4.0	5.0
35 59 19	5.5	7.0	8.0
35 69 19	7.5	9.5	11.0
35 79 19	10.5	13.5	15.5
35 89 19	14.5	18.0	21.0
35 99 11	15.0	20.0	23.0
35 09 13	14.0	17.0	19.0
35 20 19	23.0	-	-

AMORTIGUADORES HIDRÁULICOS RECOMENDACIONES DE MANTENIMIENTO

Los amortiguadores son componentes muy influyentes en la seguridad de una planta. Protegen al sistema de tuberías y otros componentes de sobrecargas dinámicas debidas a efectos de carga no esperados. Al ser estos impredecibles, el correcto funcionamiento de los amortiguadores debe garantizarse en cualquier momento.

En condiciones de operación normal los amortiguadores están diseñados para funcionar durante los 40 años de vida útil de la planta. Los sellados y el fluido deberá ser repuestos al menos una vez durante este periodo, nunca más tarde de 20 años.

Sin embargo, bajo ciertas condiciones (tensiones extremas) los amortiguadores pueden experimentar un envejecimiento prematuro y su desgaste mecánico puede acelerarse. A fin de garantizar que el amortiguador opera con fiabilidad total, se recomienda un mantenimiento preventivo. Este mantenimiento es responsabilidad de los operarios de la planta.

Medidas

1. Inspección periódica

Inspección visual, una vez al año.

2. Inspecciones completas

Pruebas de funcionamiento, no más tarde de a los 12 años de la puesta en marcha.

Banco de pruebas móvil en una planta nuclear belga.

Implementación

Los trabajos de inspección y mantenimiento deben ser llevados a cabo por personal formado para este propósito. Los especialistas de LISEGA pueden hacerlo si se requiere. Para las pruebas de funcionamiento dinámico LISEGA cuenta con bancos de pruebas específicos, que pueden ser transportados hasta la planta.

1. Inspección periódica

La inspección periódica incluye una inspección visual de todas las unidades instaladas, y debe llevarse a cabo una vez al año. La primera inspección debe efectuarse inmediatamente antes de la puesta en marcha.

Durante la inspección periódica no deben revisarse solamente los amortiguadores, sino también las condiciones medioambientales y situación de instalación. Los elementos a comprobar incluyen:

- → Todas las unidades a inspeccionar, anotando la posición de instalación.
- → Desplazamientos esperados de las conexiones en operación.
- → Condiciones medioambientales o de operación especiales.
- → Cualquier mantenimiento realizado previamente.

3

En la posición de instalación se debe comprobar lo siguiente:

- → Conformidad de los datos de la placa de identificación con la lista de comprobación
- → Correcta ubicación de todas las conexiones para una correcta actuación de las cargas.
- → Libertad de movimiento del amortiguador durante desplazamientos en operación
- → Posición del pistón principal, comprobando que dispone de recorrido suficiente, incluyendo la reserva de desplazamiento (min. 10 mm).
- → Condición exterior del amortiguador, revisando posibles daños o fugas.
- → Área circundante, comprobando posibles señales de operación inusual, por ejemplo aumentos de temperatura
- → Nivel del fluido observando el indicador

Mientras el pistón del depósito no pueda verse a través de la ventana de cristal habrá suficiente fluido en el depósito. Si el pistón es visible, debemos suponer que ha habido pérdida de fluido hidráulico.

Las observaciones y descubrimientos deben anotarse en la lista de comprobación y si se requiere, deben redactarse recomendaciones correctoras.

2. Inspección completa

Después de 12 años de operación se lleva a cabo una nueva inspección completa, en la cual se selecciona una muestra representativa de amortiguadores de entre todos los suministrados e instalados (recomendable un mínimo de 2 por cada tipo). Estos amortiguadores son sometidos a pruebas de funcionamiento completas. Si los resultados de la prueba son satisfactorios, los amortiguadores pueden reinstalarse para continuar con su operación. En el caso de anomalías en funcionamiento, el amortiguador en cuestión debe ser desmontado y sus componentes inspeccionados. Los operadores de la planta son responsables de adoptar cualquier medida correctora y documentarla apropiadamente.

El alcance de las pruebas y la selección de los amortiguadores a probar debe ser aprobado por el correspondiente departamento de la planta y por el ingeniero responsable. Se debe considerar especialmente los factores de tensión (temperatura, radiación, cargas, vibración en operación).

La planificación en tiempo y el alcance de la siguiente inspección completa debe decidirse en base a los resultados de la inspección realizada.

Después de aproximadamente 20 años de operación, se recomienda la sustitución del fluido y el sellado en todos los amortiguadores. Tras este trabajo, llevado a cabo por personal formado, y empleando componentes originales LISEGA, y después de una prueba de funcionamiento satisfactoria, los amortiguadores pueden ser empleados 20 años más.

Ejemplos de montaje de DAB en central nuclear.

ABRAZADERAS DINAMICAS TIPO 36, 37

En el ámbito de los soportes dinámicos, frecuentemente, no se presta la debida atención al diseño de las abrazaderas. Aún cuando los componentes dinámicos principales (amortiguadores, restricciones y absorbedores de energía) sean de gran calidad, las abrazaderas defectuosas pueden afectar al funcionamiento de toda la construcción.

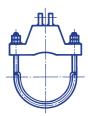
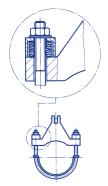
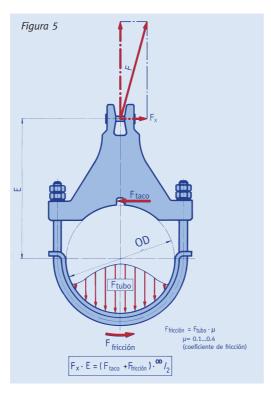


Figura 1

Figura 2

Figura 3




Figura 4

Distribución de cargas en una abrazadera dinámica con tacos soldados

La inestabilidad causada por abrazaderas de tipo de sujeción friccional (fig. 1) deformadas es especialmente peligrosa.

Debido a las inevitables características de deslizamiento de los metales, es imposible garantizar una sujeción friccional duradera a altas temperaturas, por medio de un simple tornillo. Ni siquiera un atornillado sobredimensionado resuelve el problema, porque su apriete causaría una contracción de la tubería inadmisible.

- → Un fallo típico es el diseño de una abrazadera demasiado flexible (fig. 2), con la que no se logra la rigidez necesaria
- → Debe prestarse atención a que las conexiones en las abrazaderas ajusten perfectamente
- → Para evitar tensiones adicionales no deseadas, debe garantizarse suficiente espacio para permitir el movimiento lateral en el desplazamiento del sistema de tubería.

Prevención de la deformación mediante tacos soldaos a la tubería

Para prevenir la deformación, LISEGA recomienda el empleo de tacos soldados a la tubería con abrazaderas dinámicas (fig. 3, 5, 6). De este modo, se garantiza un funcionamiento fiable de la abrazadera.

Los tacos soldados mantienen la posición de las abrazaderas en la dirección de la fuerza esperada y no están sometidas a cargas significativas (fig. 5). Ni siquiera en condición de carga se producen tensiones laterales significativas, porque las fuerzas de fricción en la superficie de contacto de la tubería bajo carga proporcionan una sujeción segura.

Debido a las pequeñas cargas a absorber, la tensión de la soldadura puede mantenerse al mínimo, a pesar de las pequeñas dimensiones de los tacos. Generalmente, se mantienen por debajo del 35% del rendimiento, o del límite elástico para condición de carga H, de acuerdo a los valores admisibles en los códigos ASME/DIN.

Sujeción friccional con la ayuda de arandelas de muelle

Si la soldadura de las orejetas no resulta posible por alguna razón, LISEGA ofrece abrazaderas dinámicas provistas de arandelas de muelle (fig. 4). Mediante los conjuntos de arandelas adecuadamente dimensionados, se puede producir un par de apriete duradero para una sujeción de fricción permanente.

Figura 6

Diseño estándar LISEGA

Para proporcionar la solución ideal a todas las áreas de aplicación y al mismo tiempo lograr los ratios resistencia mecánica/ peso mas favorables, LISEGA ofrece 4 diseños estándar.

Abrazaderas dinámicas como abrazaderas colgantes

Las cargas admisibles dadas han sido calculadas para operación dinámica con amortiguadores / restricciones de acuerdo con el espectro de cargas dinámicas mostrado en la pág. 3.10.

En casos especiales las abrazaderas dinámicas se instalan como abrazaderas colgantes, sometidas a cargas estáticas permanentes. En este caso, las cargas admisibles indicadas deben de reducirse de acuerdo con la siguiente tabla:

Temperatura tuberia	Material abrazadera	Tensión permanente admisible
Hasta 350°C	S235JRG2 / S355J2G3	100%
450°C	16Mo3	90%
500°C	16Mo3	55%
510°C	13CrMo4-5	65%
530°C	13CrMo4-5	55%
560°C	13CrMo4-5	45%

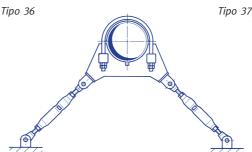
Este cálculo aplica cuando existen fuerzas deslizantes dependiendo del tiempo en un rango de 200,000h a temperaturas $\geq 450^{\circ}\text{C}$

Diseños especiales

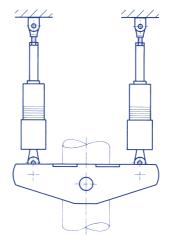
En algunos casos, los diseños especiales pueden ser alternativas prácticas a las abrazaderas tipo 36 y 37. Especialmente en casos de disposiciones paralelas y angulares, el diseño y los métodos de cálculo estandarizados han demostrado su eficacia.

Selección

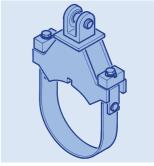
Las tablas de selección están divididas de acuerdo a los diámetros de tubería. La designación de los tipos para las abrazaderas apropiadas se realiza mediante los rangos de temperatura y las cargas admisibles.


Después, debemos comprobar las dimensiones de instalación consultando el dibujo proporcionado en cada página.

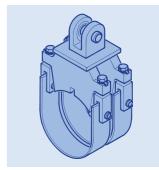
Debe prestarse una especial atención a las


dimensiones de las conexiones de los amortiguadores, absorbedores y restricciones. Si el bulón estándar d1 no encaja, puede suministrarse otra orejeta dinámica apropiada (ver pag. 3.8).

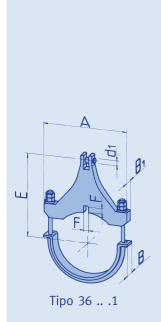
Si no se requiere ninguna disposición, la orejeta dinámica se monta de modo que el mayor grado de ángulo se sitúe en el eje de la tubería. Para el tipo 37, la orejeta dinámica debe solicitarse por separado.


Abrazadera especial para disposición angular

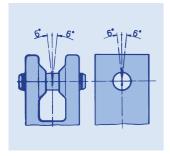
Abrazadera dinámica axial con amortiguadores hidráulicos


Tipo 36 .. .1/2/3

Tipo 37. .. 1/2/3/4/5/6



Tipo 36 .. .4/5


Tipo 37 .. .7/8/9

ABRAZADERAS DINAMICAS TABLA DE SELECCIÓN OD 33.7 - OD 108.0

1	Cá	álculo	de	valo	res	interme-
dios	5:	interp	ola	ción	line	eal.

- ② El grupo de carga debe indicarse en el pedido. En caso de seleccionar un grupo de carga menor al indicado en la tabla, la dim. E de la abrazadera se reduce de acuerdo con la dim. E de la orejeta dinámica (ver página 3.8).
- ③ Dimensiones de los tacos: F menos 1mm; B1 más de 2mm (ver página 3.19).

OD 33.7 (DN 25)

				misble												Grupo de 2)
Tipo	100	250	350	450	500	510	530	560	°C	d12	Emax2	Α	В	B1	F3	carga max.	kg
36 03 11	4.0	4.0	4.0							10	110	75	50	20	9	2	0.9
36 03 21				4.0	4.0					10	155	75	50	20	9	2	1.1
36 03 31						4.0	3.9	2.9		10	160	75	50	20	9	2	1.1

OD 42.4 (DN 32)

		Car	ga ad	misble	e (kN)	1										Grupo de (2
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax(2)	Α	В	B1	F(3)	carga max	· kg
36 04 11	8.0	8.0	8.0							12	130	85	50	20	9	3	1.2
36 04 21				6.4	5.1					12	175	85	50	20	9	3	1.4
36 04 31						4.0	3.9	2.9		10	175	85	50	20	9	2	1.3

OD 48.3 (DN 40)

		Car	ga ad	misble	e (kN)	1									_ (Grupo de ②	
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax ²	Α	В	B1	F3	carga max.	kg
36 05 11	8.0	8.0	7.4							12	130	90	50	20	9	3	1.2
36 05 21				6.5	5.1					12	175	90	50	20	9	3	1.5
36 05 31						4.0	4.0	2.9		10	175	90	50	20	9	2	1.4

OD 60.3 (DN 50)

		Ca	rga ac	lmisbl	e (kN)	1									Grupo de ②)	
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax ²	Α	В	B1	F3	carga max.	kg
36 06 11	16	14	11							15	150	110	50	25	9	4	1.9
36 06 21				8.0	8.0					12	190	110	50	25	9	3	2.2
36 06 31						7.2	6.1	4.4		12	195	110	50	25	9	3	2.2

OD 73.0 (DN 65)

Carga admist									Grupo de 2	
Tipo 100 250 350 450	500 510 5	530 560 °C	d1(2)	Emax ²	Α	В	B1	F3	carga max.	kg
36 07 11 15 14 12			15	160	120	50	25	9	4	2.2
36 07 21 8.0	7.6		12	210	120	50	25	9	3	2.7
36 07 31	6.9	5.8 4.2	12	215	120	50	25	9	3	2.6

OD 76.1 (DN 65)

		Car	ga ad	misble	e (kN)	1										Grupo de 2	
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax ²	Α	В	B1	F3	carga max.	kg
36 08 11	15	14	13							15	160	125	50	25	9	4	2.2
36 08 21				8.0	7.7					12	210	125	50	25	9	3	2.7
36 08 31						7.0	5.8	4.3		12	215	125	50	25	9	3	2.7

OD 88.9 (DN 80)

		Car	ga ad	misble	e (kN)	1										Grupo de 2	
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax2	Α	В	B1	F3	carga max.	kg
36 09 11	23	20	19							20	185	146	50	30	11	5	3.8
36 09 21				18	15					15	230	146	50	30	11	4	4.5
36 09 31						14	11	8.3		15	235	146	50	30	11	4	4.3

OD 108.0 (DN 100)

		Car	ga ad	lmisbl	e (kN)	1										Grupo de ②)
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax2	Α	В	B1	F3	carga max.	kg
36 10 11	32	29	24							20	205	165	50	35	11	5	4.9
36 10 21				18	15					15	265	165	50	35	11	4	6.5
36 10 31						13	11	8.1		15	270	165	50	30	11	4	5.5

ABRAZADERAS DINAMICAS TABLA DE SELECCIÓN OD 114.3 - OD 168.3

OD 114.3 (DN 100)

		Ca	rga ac	lmisbl	e (kN)	1										Grupo de	e 2
Tipo	100	250	350	450	500	510	530	560	°C	d12	Emax2	Α	В	B1	F3	carga m	ax. kg
36 11 11	31	28	24							20	210	175	50	35	11	5	5.1
36 11 21				18	15					15	270	175	50	35	11	4	6.5
36 11 24				40	35					20	280	175	100	60	13	5	11.7
36 11 31						13	10	8.0		15	280	175	50	30	11	4	5.5
36 11 34						32	26	16		20	290	175	100	60	13	5	11.8

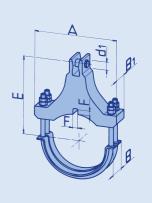
OD 133.0 (DN 125)

				lmisbl												Grupo de	
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax2	Α	В	B1	F3	carga m	ax. kg
36 13 11	31	28	23							20	225	190	50	35	11	5	5.8
36 13 21				18	14					15	275	190	50	30	11	4	6.3
36 13 24				40	37					20	285	190	100	60	13	5	12.8
36 13 31						13	11	8.0		15	285	190	50	30	11	4	6.1
36 13 34						33	27	18		20	295	190	100	60	13	5	13.0

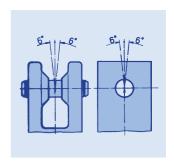
OD 139.7 (DN 125)


				lmisb												Grupo de ②)
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax2	Α	В	B1	F3	carga max.	kg
36 14 11	31	28	23							20	230	200	50	35	11	5	6.0
36 14 21				18	14					15	285	200	50	30	11	4	6.7
36 14 24				43	34					30	320	200	100	60	13	6	16.2
36 14 31						12	10	7.9		15	295	200	50	30	11	4	6.4
36 14 34						32	27	19		20	305	200	100	60	13	5	14.3

OD 159.0 (DN 150)

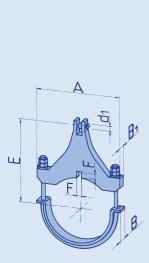

			rga ac													Grupo de	
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax2	Α	В	B1	F3	carga ma	ıx. kg
36 16 11	30	27	24							20	245	220	50	35	11	5	6.7
36 16 21				18	14					15	300	215	50	30	11	4	7.5
36 16 24				43	34					30	335	215	100	60	13	6	17.9
36 16 31						12	10	7.8		15	310	215	50	30	11	4	7.2
36 16 34						32	27	19		20	320	215	100	60	13	5	15.4

OD 168.3 (DN 150)

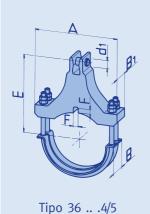

		Ca	rga ad	lmisbl	e (kN) (1)										Grupo	de ②
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax2	Α	В	B1	F3		max. kg
36 17 11	29	26	23							20	270	230	50	35	11	5	7.6
36 17 12	51	45	33							30	270	245	50	45	11	6	11.5
36 17 21				17	13					15	315	225	50	30	11	4	8.3
36 17 22				28	25					20	315	240	50	40	11	5	10.9
36 17 24				43	34					30	340	225	100	60	13	6	18.7
36 17 31						12	10	7.7		15	320	225	50	30	11	4	7.7
36 17 32						18	17	13		15	320	240	50	40	11	4	10.5
36 17 34						55	46	33		30	345	240	100	80	16	6	26.0

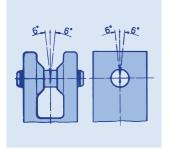
Tipo 36 .. .1/2

Tipo 36 .. .4



① Cálculo de valores intermedios: interpolación lineal.


② El grupo de carga debe indicarse en el pedido. En caso de seleccionar un grupo de carga menor al indicado en la tabla, la dim. E de la abrazadera se reduce de acuerdo con la dim. E de la orejeta dinámica (ver página 3.8).


³ Dimensiones de los tacos: F menos 1mm; B1 más de 2mm (ver página 3.19).

ABRAZADERAS DINAMICAS TABLA DE SELECCIÓN OD 193.7 - OD 267.0

Tipo 36 .. .1/2

OD 193.7 (DN 175)

		Ca	rga ad	dmisb	le (kN) (1)										Grupo de 🤅	2
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax2	Α	В	B1	F3	carga max	. kg
36 19 11	50	46	37							30	285	270	50	45	11	6	12.5
36 19 12	65	57	49							30	285	275	50	45	13	6	14.0
36 19 21				27	23					20	355	265	50	40	11	5	13.4
36 19 22				43	36					30	355	275	50	45	13	6	17.7
36 19 24				68	58					30	355	265	100	80	13	6	29.0
36 19 31						18	17	13		15	350	265	50	40	11	4	12.5
36 19 32						34	28	19		20	350	275	50	45	13	5	15.5
36 19 34						54	45	33		30	375	265	100	80	16	6	30.0

OD 219.1 (DN 200)

		Ca	rga ad	dmisb	le (kN) (1)										Grupo de	2
Tipo	100	250	350	450	500	510	530	560	°C	d12	Emax2	Α	В	B1	F3	carga ma	ıx. kg
36 22 11	49	44	38							30	310	300	50	45	11	6	14.0
36 22 12	65	57	49							30	310	300	50	45	13	6	16.0
36 22 21				28	23					20	385	290	50	40	11	5	14.0
36 22 22				43	35					30	385	300	50	45	13	6	20.0
36 22 24				71	58					30	385	290	100	80	13	6	33.0
36 22 31						18	17	13		15	370	290	50	40	11	4	12.5
36 22 32						33	28	20		20	370	300	50	45	13	5	16.5
36 22 34						53	44	32		30	395	290	100	80	16	6	34.0

OD 244.5 (DN 225)

		Ca	rga ad	dmisb	le (kN) (1)										Grupo c	le ②
Tipo	100	250	350	450	500	510	530	560	°C	d12	Emax2	Α	В	B1	F(3)	carga r	nax. kg
36 24 11	49	45	36							30	320	320	50	45	11	6	15.0
36 24 12	65	57	47							30	320	330	50	45	13	6	17.0
36 24 21				29	22					20	400	320	50	40	11	5	15.0
36 24 22				43	35					30	400	330	50	45	13	6	21.5
36 24 24				74	58					30	400	320	100	80	13	6	35.0
36 24 25				109	86					50	415	330	100	90	16	7	48.0
36 24 31						18	17	13		15	395	320	50	40	11	4	13.5
36 24 32						33	27	18		20	395	330	50	45	13	5	18.0
36 24 34						52	44	32		30	420	320	100	80	16	6	35.0
36 24 35						79	66	44		30	420	330	100	90	16	6	43.0
36 24 31 36 24 32 36 24 34				109	00	33 52	27 44	18 32		15 20 30	395 395 420	320 330 320	50 50 100	40 45 80	11 13 16	5	13.5 18.0 35.0

OD 267.0 (DN 250)

		Ca	rga ac	lmisb	e (kN) (1)										Grupo de	2
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax ²	Α	В	B1	F3	carga ma	x. kg
36 26 11	49	44	38							30	335	345	50	45	11	6	16.0
36 26 12	65	57	48							30	335	350	50	45	13	6	18.5
36 26 21				29	23					20	410	340	50	40	11	5	16.0
36 26 22				43	35					30	410	350	50	45	13	6	22.0
36 26 24				74	58					30	410	340	100	80	13	6	36.0
36 26 25				110	87					50	425	350	100	90	16	7	50.0
36 26 31						18	17	13		15	410	340	50	40	11	4	14.5
36 26 32						32	27	19		20	410	350	50	45	13	5	19.0
36 26 34						52	43	32		30	435	340	100	80	16	6	37.0
36 26 35						78	66	47		30	435	350	100	90	16	6	45.0

- ① Cálculo de valores intermedios: interpolación lineal.
- ② El grupo de carga debe indicarse en el pedido. En caso de seleccionar un grupo de carga menor al indicado en la tabla, la dim. E de la abrazadera se reduce de acuerdo con la dim. E de la orejeta dinámica (ver página 3.8).
- ③ Dimensiones de los tacos: F menos 1mm; B1 más de 2mm (ver página 3.19).

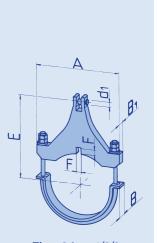
ABRAZADERAS DINAMICAS TABLA DE SELECCIÓN OD 273.0 - OD 355.6

3

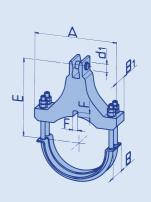
OD 273.0 (DN 250)

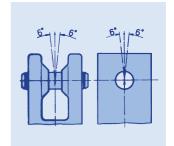
		Ca	rga ad	dmisbl	le (kN	1										Grupo de (2
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax ²	Α	В	B1	F(3)	carga max	. kg
36 27 11	48	44	38							30	345	350	50	45	11	6	17
36 27 12	65	57	47							30	345	355	50	45	13	6	19
36 27 14	110	100	81							50	360	345	100	80	13	7	34
36 27 15	166	150	120							50	360	355	100	90	16	7	42
36 27 21				28	22					20	420	345	50	40	11	5	16
36 27 22				43	34					30	420	355	50	45	13	6	23
36 27 24				73	58					30	420	345	100	80	13	6	37
36 27 25				109	86					50	435	355	100	90	16	7	52
36 27 31						18	17	12		15	435	345	50	40	11	4	15
36 27 32						31	26	18		20	435	355	50	45	13	5	20
36 27 34						50	42	31		30	460	345	100	80	16	6	40
36 27 35						76	64	45		30	460	355	100	90	16	6	48

OD 323.9 (DN 300)


		Ca	rga ad	dmisb	le (kN) (1)										Grupo de 2	
Tipo	100	250	350	450	500	510	530	560	°C	d12	Emax ²	Α	В	B1	F(3)	carga max.	kg
36 32 11	37	35	34							20	380	405	60	40	11	5	19
36 32 12	65	57	48							30	380	415	60	45	13	6	24
36 32 13	100	100	81							30	380	430	60	60	13	6	34
36 32 14	164	149	134							50	395	415	120	90	16	7	50
36 32 15	200	182	163							50	395	430	120	120	16	7	71
36 32 21				28	22					20	450	405	60	40	11	5	20
36 32 22				43	34					30	450	415	60	45	13	6	28
36 32 23				67	63					30	450	430	60	60	13	6	38
36 32 24				108	85					50	465	415	120	90	16	7	58
36 32 25				143	137					50	465	430	120	120	21	7	85
36 32 31						18	17	12		15	450	405	60	40	11	4	20
36 32 32						30	25	18		20	470	415	60	45	13	5	25
36 32 33						56	47	31		30	470	430	60	60	13	6	39
36 32 34						78	65	48		30	470	415	120	90	16	6	54
36 32 35						136	114	83		50	485	430	120	120	21	7	84

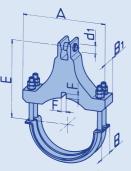
OD 355.6 (DN 350)


02 33.		J. ()	<i>J</i> 0)														
		Ca	rga ad	dmisb	le (kN) (1)										Grupo de 🤇	
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax2	Α	В	B1	F3	carga max.	kg
36 36 11	37	35	32							20	395	435	60	40	11	5	20
36 36 12	65	57	52							30	395	445	60	45	13	6	25
36 36 13	100	100	88							30	395	465	60	60	13	6	36
36 36 14	166	150	138							50	410	445	120	90	16	7	54
36 36 15	200	182	166							50	410	465	120	120	16	7	76
36 36 21				27	21					20	480	435	60	40	11	5	22
36 36 22				42	33					30	480	445	60	45	13	6	30
36 36 23				68	61					30	480	465	60	60	13	6	42
36 36 24				106	84					50	495	445	120	90	16	7	64
36 36 25				143	137					50	495	465	120	120	21	7	91
36 36 31						18	17	12		15	475	435	60	40	11	4	21
36 36 32						30	25	18		20	495	445	60	45	13	5	27
36 36 33						55	46	33		30	495	465	60	60	13	6	41
36 36 34						77	64	47		30	495	445	120	90	16	6	59
36 36 35						135	113	83		50	510	465	120	120	21	7	89

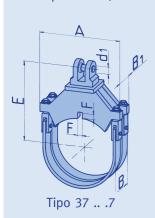

② El grupo de carga debe indicarse en el pedido. En caso de seleccionar un grupo de carga menor al indicado en la tabla, la dim. E de la abrazadera se reduce de acuerdo con la dim. E de la orejeta dinámica (ver página 3.8).

Tipo 36 .. .1/2/3

Tipo 36 .. .4/5

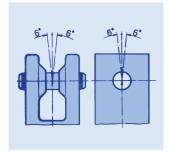

³ Dimensiones de los tacos: F menos 1mm; B1 más de 2mm (ver página 3.19).

ABRAZADERAS DINAMICAS TABLA DE SELECCIÓN OD 368.0 - OD 406.4



OD 368.0 (DN 350)

		Ca	rga ac	lmisbl	le (kN) (1)										Grupo de 2)
Tipo	100	250	350	450	500	510	530	560	°C	d12	Emax2	Α	В	B1	F3	carga max.	kg
36 37 11	37	35	34							20	400	450	60	40	11	5	21
36 37 12	65	57	48							30	400	455	60	45	13	6	26
36 37 13	100	100	90							30	400	475	60	60	13	6	36
36 37 14	166	151	139							50	415	455	120	90	16	7	55
36 37 15	279	230	160							60	440	475	120	120	16	8	87
36 37 21				27	21					20	485	450	60	40	11	5	23
36 37 22				42	33					30	485	455	60	45	13	6	31
36 37 23				69	61					30	485	475	60	60	13	6	42
36 37 24				106	84					50	500	455	120	90	16	7	65
36 37 25				143	137					50	500	475	120	120	21	7	93
36 37 31						18	17	12		15	480	450	60	40	11	4	21
36 37 32						30	25	17		20	500	455	60	45	13	5	27
36 37 33						55	46	34		30	500	475	60	60	13	6	42
36 37 34						77	65	47		30	500	455	120	90	16	6	60
36 37 35						135	113	83		50	515	475	120	120	21	7	91



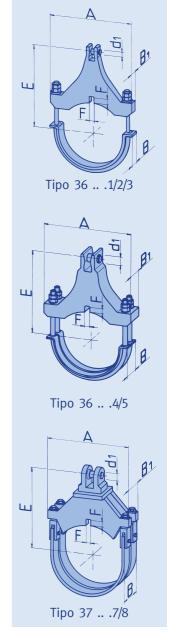
Tipo 36 .. .4/5

OD 406.4 (DN 400)

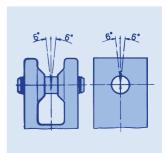
		Ca	rga ac	dmisb	le (kN	1										Grupo de ②)
Tipo	100	250	350	450	500	510	530	560	°C	d12	Emax2	Α	В	B1	F3	carga max.	kg
36 41 11	37	35	34							20	430	485	60	40	11	5	23
36 41 12	65	56	44							30	430	495	60	45	13	6	28
36 41 13	100	100	83							30	430	520	60	60	13	6	40
36 41 14	164	149	137							50	445	495	120	90	16	7	61
36 41 15	277	251	216							60	470	520	120	120	21	8	97
36 41 21				27	21					20	510	485	60	40	11	5	25
36 41 22				42	33					30	510	495	60	45	13	6	34
36 41 23				73	61					30	510	520	60	60	13	6	46
36 41 24				105	83					50	525	495	120	90	16	7	70
36 41 25				143	137					50	525	520	120	120	21	7	102
37 41 27				252	244					60	580	485	310	230	21	8	183
36 41 31						18	16	12		15	510	485	60	40	11	4	23
36 41 32						29	24	18		20	530	495	60	45	13	5	29
36 41 33						54	46	33		30	530	520	60	60	13	6	45
36 41 34						76	64	46		30	530	495	120	90	16	6	64
36 41 35						133	112	82		50	545	520	120	120	21	7	97
37 41 37						240	210	136		60	600	485	310	230	21	8	188

- 1 Cálculo de valores intermedios: interpolación lineal.
- ② El grupo de carga debe indicarse en el pedido. En caso de seleccionar un grupo de carga menor al indicado en la tabla, la dim. E de la abrazadera se reduce de acuerdo con la dim. E de la orejeta dinámica (ver página 3.8).
- 3 Dimensiones de los tacos: F menos 1mm; B1 más de 2mm (ver página 3.19).

ABRAZADERAS DINAMICAS TABLA DE SELECCIÓN OD 419.0 - OD 457.2

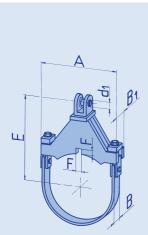

3

OD 419.0 (DN 400)

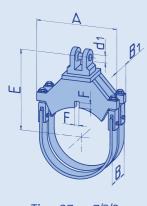

		Ca	rga ac	lmisbl	le (kN	1										Grupo d	e ②
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax2	Α	В	B1	F3	carga n	nax. kg
36 42 11	37	35	34							20	440	500	60	40	11	5	24
36 42 12	65	57	45							30	440	510	60	45	13	6	30
36 42 13	100	100	84							30	440	525	60	60	13	6	42
36 42 14	163	148	136							50	455	510	120	90	16	7	63
36 42 15	276	250	218							60	480	525	120	120	21	8	100
36 42 21				26	21					20	530	500	60	40	11	5	26
36 42 22				41	32					30	530	510	60	45	13	6	35
36 42 23				76	60					30	530	525	60	60	13	6	48
36 42 24				103	82					50	545	510	120	90	16	7	73
36 42 25				143	137					50	545	525	120	120	21	7	106
37 42 27				257	243					60	595	500	310	230	21	8	190
36 42 31						18	16	12		15	520	500	60	40	11	4	24
36 42 32						29	24	18		20	540	510	60	45	13	5	31
36 42 33						54	45	33		30	540	525	60	60	13	6	47
36 42 34						75	63	46		30	545	510	120	90	16	6	66
36 42 35						132	111	81		50	560	525	120	120	21	7	100
37 42 37						240	210	136		60	605	500	310	230	21	8	190

OD 457.2 (DN 450)

02 137			rga ac	dmisb	le (kN	1										Grupo de (2)
Tipo	100	250	350	450	500	510	530	560	°C	d12	Emax2	Α	В	B1	F3	carga max	
36 46 11	37	35	32							20	470	540	60	40	13	5	26
36 46 12	65	57	52							30	470	545	60	45	13	6	33
36 46 13	100	100	95							30	470	565	60	60	13	6	47
36 46 14	161	146	134							50	485	545	120	90	16	7	70
36 46 15	274	248	228							60	510	565	120	120	21	8	110
36 46 21				26	21					20	550	540	60	40	13	5	28
36 46 22				41	32					30	550	545	60	45	13	6	38
36 46 23				76	60					30	550	565	60	60	13	6	52
36 46 24				101	79					50	585	545	120	90	16	7	81
36 46 25				143	137					50	585	565	120	120	21	7	116
37 46 27				257	243					60	615	535	310	230	21	8	200
36 46 31						16	16	11		15	550	540	60	40	13	4	26
36 46 32						28	24	17		20	570	545	60	45	13	5	34
36 46 33						53	45	32		30	570	565	60	60	13	6	52
36 46 34						74	62	45		30	575	545	120	90	16	6	71
36 46 35						131	110	80		50	590	565	120	120	21	7	112
37 46 37						239	208	135		60	635	535	310	230	21	8	205
37 46 38						347	309	207		70	675	550	330	250	26	9	290

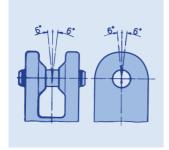


- ① Cálculo de valores intermedios: interpolación lineal.
- ② El grupo de carga debe indicarse en el pedido. En caso de seleccionar un grupo de carga menor al indicado en la tabla, la dim. E de la abrazadera se reduce de acuerdo con la dim. E de la orejeta dinámica (ver página 3.8).
- 3 Dimensiones de los tacos: F menos 1mm; B1 más de 2mm (ver página 3.19).



ABRAZADERAS DINAMICAS TABLA DE SELECCIÓN OD 508.0 - OD 558.8

OD 508.0 (DN 500)

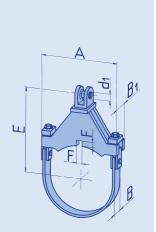


Tipo 37 .. .7/8/9

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			00)														
			Ca	rga ad	dmisb	le (kN) (1)										Grupo de 2	
	Tipo	100	250	350	450	500	510	530	560	°C	d12	Emax2	Α	В	B1	F3	carga max.	kg
3	37 51 11	75	57	41							30	515	595	170	130	13	6	43
3	37 51 12	126	100	73							50	530	620	170	136	13	7	63
3	37 51 13	180	137	100							60	560	630	230	180	16	8	104
3	37 51 14	270	195	153							70	600	655	330	260	21	9	183
3	37 51 17	356	269	195							70	600	590	310	230	21	9	210
3	37 51 21				51	49					30	595	575	140	104	13	6	40
3	37 51 22				81	76					50	620	590	170	130	13	7	65
3	37 51 23				116	111					50	620	605	180	136	16	7	90
3	37 51 24				181	172					60	650	625	240	180	21	8	148
3	37 51 25				211	201					60	650	635	240	190	21	8	179
3	37 51 26				234	222					60	650	670	250	190	21	8	198
3	37 51 28				380	360					70	650	605	330	250	26	9	295
3	37 51 31						45	37	27		30	625	580	140	104	13	6	42
3	37 51 32						76	71	47		30	625	600	170	130	13	6	63
3	37 51 33						108	94	68		50	640	600	180	136	16	7	91
3	37 51 34						164	149	109		60	665	640	230	180	21	8	146
3	37 51 35						198	183	132		60	665	640	240	190	26	8	180
3	37 51 38						346	307	201		70	710	605	330	250	26	9	310

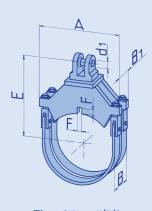
OD 558.8 (DN 550)

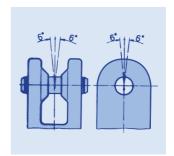
		Ca	rga ac	lmisb	le (kN)	1										Grupo de 🤇	
Tipo	100	250	350	450	500	510	530	560	°C	d12	Emax2	Α	В	B1	F3	carga max.	kg
37 56 11	74	56	41							30	550	645	170	130	13	6	45
37 56 12	126	100	72							50	565	670	170	136	13	7	66
37 56 13	180	136	100							60	595	680	230	180	16	8	110
37 56 14	270	195	153							70	635	705	330	260	21	9	191
37 56 17	356	269	195							70	635	640	310	230	21	9	226
37 56 21				50	48					30	640	630	140	104	13	6	43
37 56 22				80	76					50	655	640	170	130	13	7	69
37 56 23				116	110					50	655	655	180	136	16	7	95
37 56 24				181	171					60	680	675	240	180	21	8	155
37 56 25				211	201					60	680	685	240	190	21	8	187
37 56 26				233	221					60	680	720	250	190	21	8	206
37 56 28				370	350					70	725	655	330	250	26	9	330
37 56 31						45	37	27		30	650	625	140	104	13	6	44
37 56 32						76	71	51		30	650	650	170	130	13	6	66
37 56 33						108	94	68		50	665	650	180	136	16	7	95
37 56 34						163	149	108		60	695	690	230	180	21	8	153
37 56 35						198	182	132		60	695	690	240	190	21	8	188
37 56 38						346	304	196		70	735	655	330	250	26	9	330
37 56 39						415	385	265		70	735	670	390	290	26	9	405


- 1 Cálculo de valores intermedios: interpolación lineal.
- ② El grupo de carga debe indicarse en el pedido. En caso de seleccionar un grupo de carga menor al indicado en la tabla, la dim. E de la abrazadera se reduce de acuerdo con la dim. E de la orejeta dinámica (ver página 3.8).
- 3 Dimensiones de los tacos: F menos 1mm; B1 más de 2mm (ver página 3.19).

ABRAZADERAS DINAMICAS TABLA DE SELECCIÓN OD 609.6 - OD 660.4

OD 609.6 (DN 600)

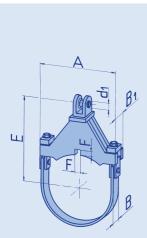

		Ca	rga ad	dmisb	le (kN	1										Grupo de 2)
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax2	Α	В	B1	F3	carga max.	kg
37 61 11	75	57	41							30	575	695	170	130	16	6	47
37 61 12	126	100	73							50	590	720	170	136	16	7	68
37 61 13	182	137	100							60	620	730	230	180	16	8	114
37 61 14	270	197	155							70	660	755	330	260	16	9	197
37 61 17	359	272	196							70	660	690	310	230	21	9	236
37 61 18	540	412	300							70	660	705	330	250	21	9	295
37 61 21				50	48					30	670	680	140	104	16	6	46
37 61 22				80	76					50	685	690	170	130	16	7	71
37 61 23				116	110					50	685	705	180	136	16	7	100
37 61 24				180	171					60	715	725	240	180	21	8	164
37 61 25				210	200					60	715	735	240	190	21	8	197
37 61 26				233	221					60	715	770	250	190	21	8	218
37 61 28				367	347					70	760	705	330	250	26	9	355
37 61 31						45	37	26		30	685	680	140	104	16	6	47
37 61 32						76	71	51		30	685	700	170	130	16	6	69
37 61 33						108	93	68		50	700	700	180	136	16	7	100
37 61 34						162	148	107		60	730	740	230	180	21	8	161
37 61 35						196	182	132		60	730	740	240	190	21	8	198
37 61 38						344	302	195		70	770	705	330	250	26	9	350
37 61 39						413	380	277		70	770	720	390	290	26	9	430


Tipo 37 .. .1/2/3/4/5/6

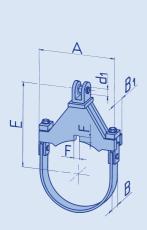
OD 660.4 (DN 650)

		Ca	rga ac	dmisbl	le (kN	1										Grupo de 2	
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax2	Α	В	B1	F3	carga max.	
37 66 11	75	57	41							30	605	750	170	130	16	6	50
37 66 12	126	100	73							50	620	770	170	136	16	7	73
37 66 13	182	138	100							60	650	780	230	180	16	8	120
37 66 14	274	198	155							70	690	805	330	260	16	9	205
37 66 17	360	273	197							70	690	740	310	230	21	9	250
37 66 18	540	413	300							70	690	755	330	250	21	9	310
37 66 21				52	49					30	700	730	145	110	16	6	55
37 66 22				79	76					50	715	740	175	136	16	7	81
37 66 23				116	110					50	715	755	180	136	16	7	104
37 66 24				180	170					60	750	775	240	180	21	8	170
37 66 25				210	200					60	750	785	240	190	21	8	207
37 66 26				233	221					60	750	820	250	190	21	8	230
37 66 28				366	347					70	790	755	330	250	26	9	375
37 66 31						46	38	27		30	715	730	145	110	16	6	55
37 66 32						77	72	53		30	715	750	175	136	16	6	80
37 66 33						108	94	68		50	730	750	180	136	16	7	105
37 66 34						164	149	108		60	755	790	230	180	21	8	168
37 66 35						198	183	133		60	755	790	240	190	21	8	206
37 66 38						344	302	195		70	795	755	330	250	26	9	370
37 66 39						413	380	277		70	795	770	390	290	26	9	455

Tipo 37 .. .7/8/9



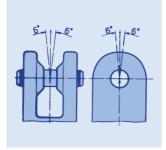
① Cálculo de valores intermedios: interpolación lineal.


② El grupo de carga debe indicarse en el pedido. En caso de seleccionar un grupo de carga menor al indicado en la tabla, la dim. E de la abrazadera se reduce de acuerdo con la dim. E de la orejeta dinámica (ver página 3.8).

³ Dimensiones de los tacos: F menos 1mm; B1 más de 2mm (ver página 3.19).

ABRAZADERAS DINAMICAS TABLA DE SELECCIÓN OD 711.2 - OD 762.0

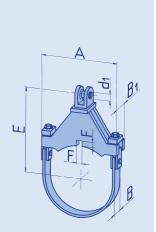
Tipo 37 .. .1/2/3/4/5/6


		Cai	rga ac	lmisb	le (kN	1										Grupo de	2
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax2	Α	В	B1	F3	carga ma	ax. kg
37 71 11	75	57	41							30	635	800	170	130	16	6	53
37 71 12	126	96	68							50	650	825	170	136	16	7	75
37 71 13	182	138	100							60	680	835	230	180	16	8	124
37 71 14	275	200	156							70	720	860	330	260	16	9	211
37 71 15	335	244	188							70	720	880	330	260	21	9	240
37 71 18	540	414	300							70	720	810	330	250	21	9	325
37 71 21				52	49					30	725	780	145	110	16	6	58
37 71 22				79	76					50	745	795	175	136	16	7	85
37 71 23				116	110					50	745	810	180	136	16	7	110
37 71 24				182	172					60	770	830	240	180	21	8	177
37 71 25				212	202					60	770	840	240	190	21	8	215
37 71 26				235	223					60	770	875	250	190	21	8	240
37 71 28				368	350					70	815	810	330	250	26	9	390
37 71 31						47	38	27		30	740	780	145	110	16	6	59
37 71 32						78	72	54		30	740	805	175	136	16	6	84
37 71 33						109	94	68		50	755	805	180	136	16	7	109
37 71 34						165	150	109		60	780	845	230	180	21	8	173
37 71 35						199	184	134		60	780	845	240	190	21	8	215
37 71 38						345	302	195		70	825	810	330	250	26	9	385
37 71 39						415	383	278		70	825	825	390	290	26	9	475

Tipo 37 .. .8/9

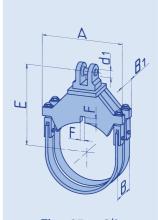
OD 762.0 (DN 750)

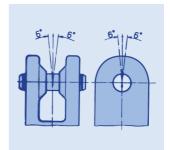
		Ca	rga ac	dmisb	le (kN) (1)										Grupo de ②	
Tipo	100	250	350	450	500	510	530	560	°C	d12	Emax2	Α	В	B1	F3	carga max.	kg
37 76 11	75	56	41							30	665	850	170	130	16	6	56
37 76 12	125	100	70							50	680	875	170	136	16	7	80
37 76 13	182	138	100							60	710	885	230	180	16	8	128
37 76 14	280	216	156							70	750	910	330	260	16	9	222
37 76 15	335	244	188							70	750	930	330	260	21	9	247
37 76 16	400	300	236							70	750	935	330	260	21	9	270
37 76 18	540	414	300							70	750	860	330	250	21	9	345
37 76 21				51	49					30	760	830	145	110	16	6	62
37 76 22				79	76					50	775	845	175	136	16	7	90
37 76 23				116	110					50	775	860	180	136	16	7	113
37 76 24				182	173					60	800	880	240	180	21	8	185
37 76 26				236	223					60	800	925	250	190	21	8	245
37 76 28				370	350					70	845	860	330	250	26	9	410
37 76 31						47	38	28		30	765	830	145	110	16	6	62
37 76 32						78	73	53		30	765	855	175	136	16	6	87
37 76 33						109	95	69		50	780	855	180	136	16	7	113
37 76 34						166	151	110		60	805	895	230	180	21	8	180
37 76 35						200	185	135		60	805	895	240	190	21	8	222
37 76 38						347	305	197		70	850	860	330	250	26	9	405
37 76 39						417	385	280		70	850	875	390	290	26	9	500


- 1 Cálculo de valores intermedios: interpolación lineal.
- ② El grupo de carga debe indicarse en el pedido. En caso de seleccionar un grupo de carga menor al indicado en la tabla, la dim. E de la abrazadera se reduce de acuerdo con la dim. E de la orejeta dinámica (ver página 3.8).
- ③ Dimensiones de los tacos: F menos 1mm; B1 más de 2mm (ver página 3.19).

ABRAZADERAS DINAMICAS TABLA DE SELECCIÓN OD 812.8 - OD 914.4

OD 812.8 (DN 800)


		Ca	rga a	dmisbl	le (kN	1										Grupo de 2	
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax2	Α	В	B1	F3	carga max.	kg
37 81 11	74	56	40							30	700	905	170	130	16	6	59
37 81 12	125	100	71							50	715	925	170	136	16	7	84
37 81 13	181	137	100							60	745	935	230	180	16	8	134
37 81 14	280	215	156							70	785	960	330	260	16	9	230
37 81 15		244	188							70	785	980	330	260	21	9	255
37 81 16	400	300	235							70	785	985	330	260	21	9	280
37 81 18	540	413	300							70	785	910	330	250	21	9	360
37 81 21				51	49					30	790	880	145	110	16	6	65
37 81 22				79	76					50	805	895	175	136	16	7	95
37 81 23				116	110					50	805	910	180	136	16	7	118
37 81 24				182	173					60	830	930	240	180	21	8	190
37 81 26				236	224					60	830	975	250	190	21	8	255
37 81 28				370	350					70	875	910	330	250	26	9	430
37 81 31						47	38	28		30	790	880	145	110	16	6	65
37 81 32						78	73	54		30	790	905	175	136	16	6	92
37 81 33						110	95	69		50	805	910	180	136	16	7	117
37 81 34						166	153	107		60	830	945	230	180	21	8	185
37 81 35						201	186	135		60	830	945	240	190	21	8	230
37 81 38						350	306	198		70	875	910	330	250	26	9	420
37 81 39						420	387	280		70	875	925	390	290	26	9	520

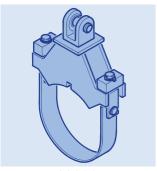

Tipo 37 .. .1/2/3/4/5/6

OD 914.4 (DN 900)

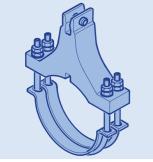
		Ca	rga ad	dmisbl	e (kN)	1										Grupo de (2
Tipo	100	250	350	450	500	510	530	560	°C	d1(2)	Emax2	Α	В	B1	F3	carga max	. kg
37 91 11	74	56	40							30	760	1005	170	130	16	6	66
37 91 12	120	94	67							50	775	1030	170	136	16	7	93
37 91 13	181	137	100							60	805	1040	230	180	16	8	144
37 91 14	280	216	156							70	845	1060	330	260	16	9	240
37 91 15	335	244	188							70	845	1080	330	260	21	9	270
37 91 16	400	300	236							70	845	1090	330	260	21	9	295
37 91 18	540	413	300							70	845	1010	330	250	21	9	390
37 91 21				52	49					30	840	985	145	110	16	6	72
37 91 22				80	77					50	855	995	175	136	16	7	103
37 91 23				117	111					50	855	1010	180	136	16	7	125
37 91 24				184	174					60	880	1030	240	180	21	8	200
37 91 26				238	226					60	880	1080	250	190	21	8	270
37 91 28				374	354					70	925	1010	330	250	26	9	460
37 91 29				450	425					70	925	1020	390	290	26	9	555
37 91 31						47	38	28		30	850	985	145	110	16	6	73
37 91 32						78	73	54		30	850	1005	175	136	16	6	101
37 91 33						109	96	66		50	865	1010	180	136	16	7	126
37 91 34						168	149	97		60	880	1045	230	180	21	8	195
37 91 35						203	188	137		60	880	1045	240	190	21	8	240
37 91 38						350	307	200		70	935	1010	330	250	26	9	455
37 91 39						420	388	283		70	935	1025	390	290	26	9	570

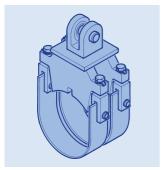
Tipo 37 .. .8/9

① Cálculo de valores intermedios: interpolación lineal.


② El grupo de carga debe indicarse en el pedido. En caso de seleccionar un grupo de carga menor al indicado en la tabla, la dim. E de la abrazadera se reduce de acuerdo con la dim. E de la orejeta dinámica (ver página 3.8).

³ Dimensiones de los tacos: F menos 1mm; B1 más de 2mm (ver página 3.19).

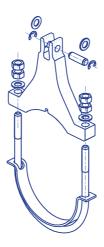

ABRAZADERAS DINAMICAS INSTRUCCIONES DE MONTAJE


Tipo 36 .. .1/2/3

Tipo 37 .. .1/2/3/4/5/6

Tipo 36 .. .4/5

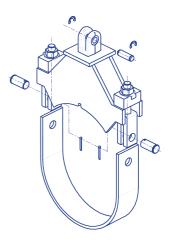
Tipo 37 .. .7/8/9


Las abrazaderas dinámicas LISEGA se suministran listas para su montaje, provistas de todas las tuercas y tornillos requeridos. Se recomienda que las unidades se almacenen en lugares cerrados. Si el almacenaje en lugares abiertos es inevitable, deben ser protegidas de la suciedad y humedad.

Prevención de deslizamiento

Para prevenir el deslizamiento de la abrazadera, se recomienda soldar un taco a la tubería (ver también pag. 3.19). Las dimensiones de los tacos pueden encontrarse en las tablas de selección de las abrazaderas dinámicas en las páginas 3.21 a 3.30.

Tipo 36


El diseño consiste en una orejeta superior sólida, provista de una orejeta dinámica integrada. En la parte inferior, dependiendo del rango de carga, se componen de uno o dos abarcones, provistos de una pletina en el interior.

Para el montaje, se deben quitar los abarcones premontados. Después situar la orejeta superior sobre el taco soldado a la tubería. Montar el abarcón y la pletina por la prte inferior de la tubería, apretando las tuercas ligeramente al principio. Entonces comprobar y posicionar la abrazadera como se requiera. Finalmente, las tuercas pueden ser totalmente apretadas.

Tipo 37

Este es el tipo más pesado, diseñado para grandes diámetros de tubería y grandes cargas. Normalmente, la orejeta dinámica tipo 35 está soldada a la orejeta superior. Si la orejeta dinámica se suministra suelta a petición del cliente, debe ser soldada "in situ" siguiendo las instrucciones de soldadura de la pagina 3.16. La parte inferior de la abrazadera consiste en una o dos pletinas de acero, dependiendo de la carga. Las platinas vienen sujetas a la orejeta, para facilitar su transporte. Para el montaje, las pletinas deben separarse de los ganchos en los que se insertan, sacando los bulones. La orejeta superior se sitúa sobre el taco. Desde debajo de la tubería se instala la pletina de acero, insertándola en los enganches y sujetándola posteriormente con los bulones, que son

finalmente asegurados por los pasadores. Una vez posicionada, la abrazadera se comprueba y se sitúa definitivamente como se requiera.

Finalmente se aprietan las tuercas adecuadamente. Las tuercas hexagonales deben asegurarse bien mediante las arandelas, a fin de prevenir que puedan aflojarse.

ABSORBEDOR DE ENERGIA

TIPO 32

Para proporcionar la mejor protección posible de los componentes de una planta ante posibles impactos de presión, se requiere un concepto totalmente desarrollado. En el uso específico de los componentes mas apropiados, la seguridad y la rentabilidad económica no son factores excluyentes.

Campo de aplicación

El campo de aplicación para los absorbedores hidráulicos LISEGA se encuentra aproximadamente entre las restricciones mecánicas LISEGA y los amortiguadores. Los absorbedores de energía se utilizan, al igual que estos componentes, para suprimir desplazamientos violentos en la tubería o en otros componentes. En contraste con las restricciones mecánicas y los amortiguadores, los absorbedores de energía están provistos de un desplazamiento libre ajustable (0-30mm), permitiendo pequeños movimientos térmicos sin ninguna resistencia.

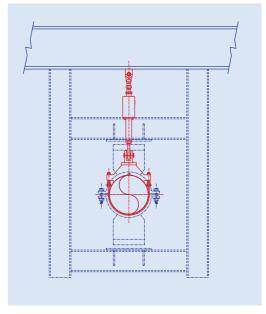
Conversión en energía de deformación

Después de atravesar el movimiento libre, los posibles impactos de presión son absorbidos mediante topes límite, y transmitidos a la estructura auxiliar, hasta una carga máxima definida (carga nominal). Las fuerzas que superen los límites admisibles son convertidas en energía de deformación por los absorbedores de energía. Los desplazamientos de la tubería dentro del rango del desplazamiento libre son aceptables, siempre que las tensiones admisibles no sean superadas. Si fuera necesario, debe aportarse la prueba correspondiente. Disponemos de software específico y consejos especiales, si nuestros clientes los requieren.

Funcionamiento sin mantenimiento

Los absorbedores de energía LISEGA son ideales para proteger a los componentes conectados a ellos de sobrecargas dinámicas de manera controlada, en caso de movimientos térmicos pequeños. Los absorbedores de energía no contienen componentes susceptibles al desgaste, y, por ello, no requieren ningún mantenimiento.

Protección ante golpes de ariete

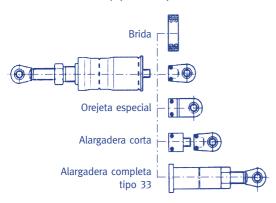

Los absorbedores de energía son ideales para proteger otros componentes conectados contra un posible golpe de ariete. Cargas de fluidos de corta duración pero gran intensidad pueden ser compensadas por cargas definidas más pequeñas. Como resultado, por medio del empleo de absorbedores de energía, no se requiere reforzar la estructura existente. En construcciones nuevas, la reducción de cargas permite un uso mas económico de la perfilaría de acero desde el principio.

Sustitución para construcciones box frame

Los absorbedores de energía son ideales para la conducción y limitación de los movimientos térmicos. De esta manera, no sólo no se requieren las habituales y generalmente caras construcciones box frame, sino que también se evitan las fuerzas de fricción entre la tubería y el marco.

Abrazadera antilátigo

Una aplicación ideal de los absorbedores de energía es como protección al efecto látigo de la tubería. Si se utiliza en una disposición angular, se pueden absorber grandes fuerzas. La dirección de las líneas de fuerza definidas puede determinarse mediante la disposición del absorbedor de energía. La ventaja del diseño con abarcones consiste en el menor radio efectivo restringido.



Absorbedor de energía empleado en lugar de una doble guía. Puede prescindirse de la construcción box frame.

3

Como sustitutos de los amortiguadores hidráulicos

Cuando los movimientos térmicos son relativamente pequeños, los absorbedores de energía constituyen un sustituto ideal para tipos de amortiguadores más antiguos, a menudo propensos al fallo. De este modo, se evitan reparaciones costosas y pruebas periódicas.

Con el fin de poder conectar los absorbedores a las conexiones existentes en campo, disponemos de una amplia oferta de conexiones especiales, aparte de nuestra alargadera estándar (tipo 33).

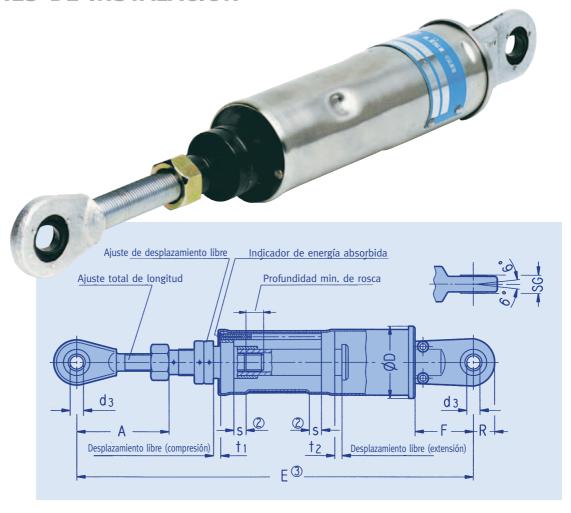
Desarrollo conjunto

El desarrollo del absorbedor de energía tipo 32 es el resultado de la cooperación específica y exitosa entre **SARGENT & LUNDY**, una importante ingeniería americana, y **LISEGA**.

SARGENT & LUNDY también ha creado el software de cálculo, o programa GAPP. Ambos, programa y absorbedor, han sido rigurosamente probados por el **NRC** (**Nuclear Reactor Comisión**) americano, y aprobados para su uso en plantas nucleares.

Donde se usen los absorbedores de energía, se puede aplicar el **programa GAPP** para realizar el análisis de transitorios sísmicos y fluidos. GAPP permite a la tubería desplazarse

Análisis del comportamiento de la tubería


fluidos. GAPP permite a la tubería desplazarse dentro de la tolerancia admisible. Para el cálculo de la carga, se considera la propiedad de limitación de carga específica de los absorbedores de energía.

La capacidad única de los absorbedores de energía de absorber y convertir energía cinética aporta al usuario beneficios valiosos, como:

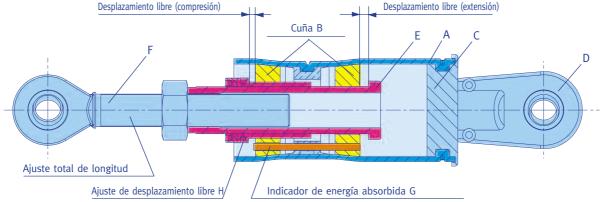
- → Limitación de cargas dinámicas para los componentes asociados
- → Permite construcciones de acero mas ligeras
- → Evita la necesidad de reforzar las estructuras auxiliares
- → Las dimensiones de instalación pequeñas minimizan el peligro de interferencias
- → No se impide el movimiento térmico de la tubería
- → No requiere mantenimiento, debido a la ausencia de partes degradables
- → No requiere pruebas periódicas
- → Montaje sencillo mediante el ajuste de su longitud

ABSORBEDORES DE ENERGIA TIPO 32 DIMENSIONES DE INSTALACIÓN

- ① Cuando la carga nominal se supera, la fuerza y movimiento sobrepasado se convierte en energía de deformación.
- 2 Máximo desplazamiento de deformación en la dirección de tensión y compresión.
- ③ Dimensiones en el punto medio del desplazamiento libre t1/t2, y un ajuste de longitud de la dimensión A. Al cambiar t2, la dimensión E se reduce o incrementa.

Datos a indicar en el pedido:

Absorbedor de energía Tipo 32 .. 16 t1=...t2=...mm con dos orejetas dinámicas para soldar tipo 35 identificación: ...


Tipo	Carga nomina (kN) 1	al s ②	t1	t2	ØD	Ø d3	E3	А	F	R	SG	Peso (kg)
32 18 16	3	5.0	0-20	0-20	56	10	300	85±50	18	15	9	0.8
32 38 16	8	5.0	0-22	0-22	60	12	355	95±50	50	20	10	1.8
32 42 16	18	5.0	0-25	0-25	80	15	440	125±75	58	22.5	12	3.6
32 52 16	46	5.0	0-25	0-25	115	20	490	150±75	65	30	16	11.5
32 62 16	100	6.5	0-25	0-25	130	30	575	165±75	100	45	22	18.5
32 72 16	200	9.5	0-28	0-28	195	50	715	175±75	130	60	35	47.0
32 82 16	350	12.5	0-30	0-30	250	60	945	225±75	165	75	44	105.0
32 92 16	550						baj	o pedido				

Uso individual

Los diseños estándar mostrados en la tabla no incluyen todas las posibilidades del alcance de suministro. LISEGA puede adaptar sus productos a los requisitos especiales de cada usuario. Esto se refiere especialmente a las aplicaciones en las que las cargas y desplazamientos superan los parámetros estándar.

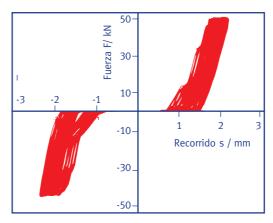
ABSORBEDOR DE ENERGIA MODO DE OPERACIÓN

MODO DE OPERACIÓN

Un absorbedor de energía trabaja mediante un movimiento libre ajustable que absorbe desplazamientos térmicos. El ajuste de este movimiento libre puede realizarse en el rango de +/-25 mm (para un diseño de tamaño medio). Dentro de este rango la tubería puede desplazarse sin resistencia. Por otra parte, los impactos dinámicos, están limitados en movimiento por medio de topes. Las fuerzas resultantes se transfieren a las estructuras próximas, hasta la carga nominal indicada, y cuando la superan, son transformadas en energía de deformación por el absorbedor de energía. Esto tiene el efecto de proteger a los componentes asociados de la sobrecarga.

El componente consiste en un manguito austenítico externo (A) con un rebaje de tamaño definido, dentro del cual se han encajado a presión estrechos discos de bronce (B). El manguito externo se cierra con un plato base (C), sobre el que se sitúa la orejeta de conexión. Las fuerzas se transfieren por toda la unidad por los stops (E) y el eje (F).

En el caso de fuerzas dinámicas que excedan la fuerza de inserción de los estrechos discos (carga nominal), el disco afectado es conducido hacia delante y produce una expansión del manguito. De esta manera, el exceso de fuerzas se mantiene fuera de la estructura próxima, convirtiéndola en energía de deformación. Si tal proceso ocurre, el progreso del disco afectado puede ser leído en la varilla indicadora (G). Para posteriores usos del absorbedor de energía, sólo se requiere un reajuste del movimiento libre a la nueva


posición, usando el mecanismo de ajuste (H). Los procedimientos correspondientes son repetitivos hasta un desplazamiento por deformación máximo (s).

Instalación

Los absorbedores de energía se clasifican de acuerdo con los grupos de carga del grupo de productos 3 (componentes dinámicos) y son compatibles en cuanto a cargas y conexiones con otros componentes de este grupo de productos. Deben considerarse las observaciones de las páginas 3.3 y 3.15 a 3.16.

Cualificación funcional

Los absorbedores de energía LISEGA han sido sometidos a un estricto programa de pruebas para probar su fiabilidad funcional. Se han probado márgenes de seguridad adecuados mediante numerosas pruebas de cargas dinámicas y estáticas.

Características probadas de carga/desplazamiento en cargas oscilantes > carga nominal.

RESTRICCIONES MECANICAS TIPO 39

En conceptos de soportación moderna, las restricciones mecánicas juegan un papel muy importante en la consecución del sistema de soportación óptimo bajo cualquier condición de operación.

Su disposición segura y fiable es la clave de su seguridad en operación y de su durabilidad.

Tareas

Las restricciones mecánicas LISEGA tipo 39 desarrollan importantes funciones para la seguridad operacional de sistemas de tubería:

- → absorción de impactos derivados de cargas no esperadas, (Ver página 3.1)
- → Guía de los sistemas de tubería para controlar la dirección de los desplazamientos térmicos calculados
- → Estabilización de sistemas de tubería flexibles fijando las llamadas posiciones "cero"
- → Diseño de límites axiales.

Modo de operación

Las restricciones mecánicas forman conexiones rígidas mediante conexiones de rótula entre la tubería y la estructura. No se restringe el desplazamiento limitado de la tubería dentro del desplazamiento angular de la restricción. Cualquier movimiento en la dirección axial de la restricción es eliminado.

Diseño

150 a

Las restricciones consisten en un cuerpo rígido provisto de conexiones de rótula en los dos extremos. El anclaje a la estructura se realiza mediante una orejeta dinámica tipo 35 (ver página 3.8). La conexión a la tubería esta formada por la correspondiente abrazadera dinámica tipo 36/37 (ver página 3.21 – 3.30).

El cuerpo esta formado por un tubo que se estrecha en los extremos por forja. Esta forma exclusiva responde al flujo de fuerzas, y permite un ratio favorable resistencia mecánica peso. Se ha prescindido totalmente de soldaduras. Las conexiones están diseñadas con forma de rótula y realizan la función de un tensor, provistas de rosca izquierda / derecha, permitiendo así un ajuste de longitud dentro de un rango de

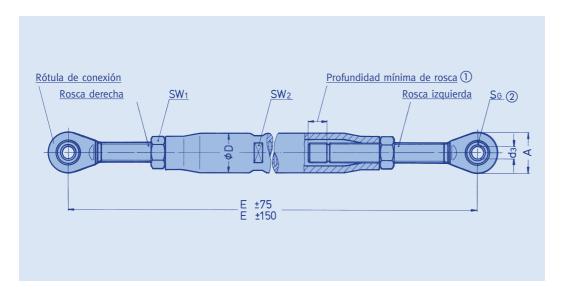
300 mm. Las superficies planas forjadas en ambos extremos tienen como objetivo permitir el uso apropiado de llaves de ajuste, facilitando así el ajuste de su longitud, incluso con la restricción instalada. Para asegurar el ajuste

de las rótulas, se emplean roscas muy finas de gran precisión.

Los cuerpos de las restricciones se fabrican en longitudes estándar. De este modo, las restricciones mecánicas LISEGA están disponibles en stock, probadas por la TÜV y cualificadas por el código ASME.

Las restricciones mecánicas LISEGA se distinguen de los diseños existentes en el mercado, ofreciendo las siguientes ventaias:

- → Ajuste de longitud mediante roscas izda / dcha.
- → Ausencia de soldadura.
- → Ajuste seguro de las juntas por roscas adecuadas.
- → Ratio favorable resistencia mecánica/ peso
- → Pruebas de cualificación por autoridades independientes.



Material:

Juntas: P250GH / C 45E+QT / S355J2G3

Tubo:

P235G11TH / P355T1

Tipo ③	Carga nominal (kN)	Α	ØD	Ø d3	E4 min	E max	SW1	SW2	S _G 2
39 24	4	30	38	10	300	1900	27	32	9
39 34	8	38	43	12	300	2150	32	36	10
39 44	18	42	57	15	300	2400	36	46	12
39 54	46	60	61	20	400	2400	60	50	16
39 64	100	82	83	30	400	2900	60	70	22
39 74	200	120	102	50	500	3400	70	85	35
39 84	350	150	115	60	750	3400	95	100	44
39 93	550	210	115⑤	70	800	3650	110	100 5	49
39 03	1000	280	159	100	1000	4150	155	135	70

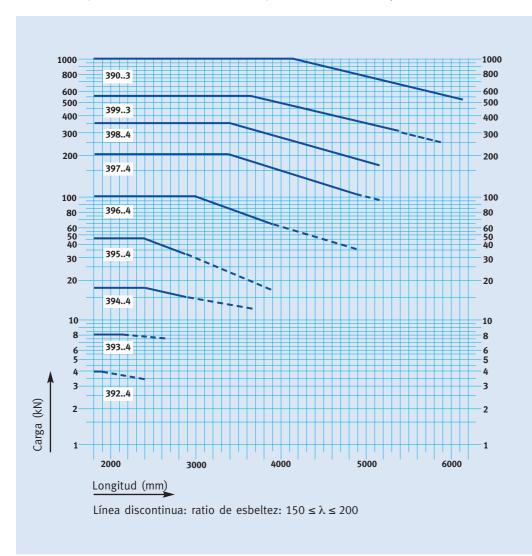
- ① Profundidad mínima de rosca marcada en la rosca
- 2 Anchura de la rótula
- ③ Debe completarse con los dígitos indicadores de la longitud (4° y 5° dígito de la designación de tipo, ver pag. 3.39)
- 4 La restricción mecánica provista de rosca izquierda – derecha puede ajustarse en longitud como un tensor. Pueden suministrarse diseños especiales con dimensiones E inferiores a las indicadas
- ⑤ Tubo Ø 115 hasta E-media = 2750, anchura de la llave 100. Tubo Ø 127 hasta E-media = 2750, anchura de la llave 100

Datos a indicar en el pedido: Restricción mecánica tipo 39

RESTRICCIONES MECANICAS TIPO 39

Selección

Al seleccionar las restricciones mecánicas de las siguientes tablas, debe observarse lo siguiente:


- **1.** La carga de operación dada debe estar cubierta por la carga nominal.
- **2.** La carga nominal determina a su vez el grupo de carga.
- **3.** Debe seleccionarse el rango de ajuste adecuado, según la longitud de instalación requerida.
- **4.** El peso se muestra en la intersección entre el grupo de carga y el rango de ajuste. Si la intersección está por debajo de la línea divisoria, es un caso de sobredimensión con carga reducida, que debe ser comprobada en la tabla de la página 3.40 para conformidad con la carga de operación indicada.
- **5.** Para la elaboración del pedido de compra, debe completarse el tipo indicando el grupo de carga en el 3er dígito del tipo.

Cargas y pesos admisibles

3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												-	1 1 (1 1)
			4	8	18 Ca	rga nominal (l 46	(N) 100	200	350				Carga no	minal (kN) 1000
			7	· ·		upo de carga		200	JJ0					e carga①
Tipo 1	Rango de	E-media	2	3	4	5	6	7	8	Tipo ①	Rango de	E-media	9	0
	ajuste					Peso (kg)					ajuste			(kg)
39 .0 34	300 - 450	375	1.3	1.9	2.7					39 .083	800 - 950	875	68	
39 .0 44	400 - 550	475	1.7	2.3	3.4	6.4	9.5			39 .093	900 - 1050	975	72	
39 .0 54	500 - 650	575	2.0	2.7	4,0	7.1	11	18		39 .103	1000 - 1150	1075	77	175
39 .0 74	600 - 900	750	2.4	3.1	6,3	8.0	12	21		39 .113	1100 - 1250	1175		183
39 .0 84	750 - 900	825							42	39 .123	1200 - 1350	1275		191
39 .1 04	850 - 1150	1000	3.2	4.2	8.0	10	16	27	46	39 .133	1300 - 1450	1375		200
39 .1 24	1100 - 1400	1250	4.0	5.2	9.5	12	20	33	56	39 .123	1100 - 1400	1250	87	
39 .1 54	1350 - 1650	1500	4.9	6.3	11	14	24	39	65	39 .153	1350 - 1650	1500	100	212
39 .1 74	1600 - 1900	1750	5.8	7.5	13	16	28	45	75	39 .173	1600 - 1900	1750	114	236
39 .2 04	1850 - 2150	2000	(6.6)	8.5	14	17	32	51	85	39 .203	1850 - 2150	2000	128	260
39 .2 24	2100 - 2400	2250	(7.5)	(9.5)	16	19	36	57	94	39 .223	2100 - 2400	2250	142	284
39 .2 54	2350 - 2650	2500		(11)	18	21	40	64	104	39 .253	2350 - 2650	2500	156	308
39 .2 74	2600 - 2900	2750			19	23	44	70	114	39 .273	2600 - 2900	2750	169	332
39 .3 04	2850 - 3150	3000			(21)	(25)	48	76	123	39 .303	2850 - 3150	3000	183	355
39 .3 24	3100 - 3400	3250			(22)	(27)	52	82	133	39 .323	3100 - 3400	3250	241	379
39 .3 54	3350 - 3650	3500			(24)	(29)	56	89	143	39 .353	3350 - 3650	3500	259	403
39 .3 74	3600 - 3900	3750				(31)	60	95	152	39 .373	3600 - 3900	3750	277	427
39 .4 04	3850 - 4150	4000					(64)	101	162	39 .403	3850 - 4150	4000	295	450
39 .4 24	4100 - 4400	4250					(68)	107	172	39 .423	4100 - 4400	4250	313	475
39 .4 54	4350 - 4650	4500					(72)	113	181	39 .453	4350 - 4650	4500	331	500
39 .4 74	4600 - 4900	4750					(76)	119	191	39 .473	4600 - 4900	4750	349	525
39 .5 04	4850 - 5150	5000						(126)	200	39 .503	4850 - 5150	5000	368	545
						39 .523	5100 - 5400	5250	385	570				
		Long	itudes (en carga	s redu	cidas ver pa	agina 3.4	0		39 .553	5350 - 5650	5500	(403)	595
			Num	ero en () ratio	de esbeltez	λ			39 .573	5600 - 5900	5750	(420)	620
				150	$\leq \lambda \leq$		39 .603	5850 - 6150	6000		640			

1 La designación del tipo debe ser completada, indicando el grupo de carga en el 3er dígito.

Tabla de cargas normales admisibles en longitudes normales / mayores.

El diagrama de la izquierda indica los valores de carga que deben deducirse de la carga nominal, en caso de requerirse longitudes mayores a la indicadas en nuestras tablas de selección

Stock de restricciones mecánicas

Disposición angular de restricciones mecánicas

ABRAZADERAS ANTILÁTIGO

ABRAZADERAS ANTILÁTIGO

Una especialidad en el área de los soportes dinámicos es la abrazadera antilátigo. Además de los absorbedores de energía tipo 32, que han demostrado proporcionar la solución optima a este problema, la operación de abarcones especialmente diseñados para grandes cargas ha demostrado ser altamente satisfactoria.

Las abrazaderas antilátigo son utilizadas exclusivamente en la industria nuclear. Reducen y absorben la energía cinética de tuberías descontroladas en casos de emergencia. Para este propósito, se aprovecha la capacidad de elongación de los abarcones, ya que están diseñados para absorber las cargas dinámicas esperadas.

Las abrazaderas antilátigo juegan un papel importante en la seguridad de los sistemas de tuberías y deben cumplir los requisitos más estrictos en lo relativo a la calidad de su diseño y fabricación. LISEGA, gran suministrador de plantas nucleares de última generación, ha demostrado satisfactoriamente su capacidad para suministrar este diseño específico.

